You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Active Control of a Scramjet Engine

    SBC: Innoveering, LLC            Topic: AF15AT19

    In this effort, Innoveering will integrate and test a closed-loop active control system for scramjet isolator shock system positioning. The approach is to control the fuel flow to the engine to position the shock train leading edge at a specified location in the isolator. The control system includes three basic elements: a shock position sensing system based, a fast response fuel valve that adjust ...

    STTR Phase II 2016 Department of DefenseAir Force
  2. Active Control of Scramjet Isolator Shocks (ACSIS)

    SBC: Innoveering, LLC            Topic: AF15AT19

    ABSTRACT: Active control of the shock system in a scramjet engine isolator opens possibilities for enhanced engine performance and reduced engine weight by eliminating excess isolator design margin. A successful system will allow for maximum performance from a given engine configuration and will deliver range and efficiency that exceeds those possible using passive unstart control. Our approach is ...

    STTR Phase I 2015 Department of DefenseAir Force
  3. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: Nextgen Aeronautics, Inc.            Topic: AF17AT018

    The focus of this STTR program is the development and maturation of a novel, room-temperature process to fabricate multi-layer metal-polymer (including PVDF and other smart materials) composites in an additive approach. This overcomes the limitation arising from the large temperature difference between metal and polymer manufacturing processes, and presents a new technology for additive manufactur ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Cyber Superiority for Air Force Combatant Commanders Using Cyber-domain

    SBC: Andro Computational Solutions LLC            Topic: AF08BT06

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies in the AC4S architecture is the Cyber Superior ...

    STTR Phase II 2016 Department of DefenseAir Force
  5. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Dynamic Cross-layer Routing Using Cognitive Spectrum Allocation (AXL-RO

    SBC: Andro Computational Solutions LLC            Topic: AF10BT09

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies that forms the basis of AC4S is the AXL-ROSA s ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. Additive Manufacturing Plastic Materials with Improved Dielectric Breakdown Strength

    SBC: Printed Performance Innovations            Topic: AF15AT07

    ABSTRACT: Material extrusion 3D printing is an Additive Manufacturing method which utilizes a polymeric monofilanment as a feedstock in the fabrication of 3D objects. The relative simplicity compared to other AM technologies makes it an attractive manufacturing tool, however, characteristics inherent to this 3D printing method (namely air gaps between print rasters) makes it undesirable for the 3D ...

    STTR Phase I 2015 Department of DefenseAir Force
  7. Adiabatic Circuits for Ultra-Low Energy Consumption

    SBC: INDIANA INTEGRATED CIRCUITS LLC            Topic: AF18BT013

    Adiabatic reversible logic provides a way to dramatically reduce power dissipation by recovering the energy used to encode information, rather than dissipating the energy to heat, as is done in conventional CMOS. For Phase I we will design test circuits that will evaluate the energy savings in adiabatic reversible logic, as compared to conventional logic. In addition to these smaller circuits, a M ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Affordable Integrated Circuit Packaging and Assembly for High-Temperature Intelligent Components

    SBC: Microelectronics Research Development Corporation            Topic: AF16AT17

    Micro-RDC proposes to demonstrate the feasibility of developing low-cost, low-weight, reliable packaging materials and processes to produce low-power advanced Integrated Circuits (ICs) that can operate continuously at temperatures between -55C and +225...

    STTR Phase I 2016 Department of DefenseAir Force
  9. Alternative Methods for Creating a Sodium Guidestar

    SBC: Arete Associates            Topic: AF17AT005

    Adaptive Optics allow ground-based astronomical observatories to overcome atmospheric distortion limited observation by using natural and artificial guide stars to measure the distortion. Sodium-layer guide stars provide near all-sky coverage for high resolution astronomy. Over the last 20 years, Optically Pumped Semiconductor Laser (OPSL), also referred to as Vertically Extended Cavity Surface Em ...

    STTR Phase II 2019 Department of DefenseAir Force
  10. Alternative Methods for Creating a Sodium Guidestar

    SBC: Crystalline Mirror Solutions, LLC            Topic: AF17AT005

    The development of compact and telescope-deployable laser sources emitting in the yellow portion of the visible spectrum is critical for the advancement of DoD-relevant adaptive optics capabilities. The objective of this project is to continue the development of novel laser architectures based on optically-pumped substrate-transferred epitaxial gain media capable of efficient thermal management an ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government