You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Auto-Docking Autonomous Burial Vehicle (AD-ABV)

    SBC: Makai Ocean Engineering, Inc.            Topic: N11AT017

    Subsequent Phase II Proposal, extension of Phase II contract N00039-12-C-0082. This contract involves the development of an underwater vehicle that can reliably and autonomously interconnect power and data cables to undersea nodes after they have been deployed. The Auto-Docking Autonomous Burial Vehicle (AD-ABV) is a cable-connecting adaptation of Makai’s proven ABV, which has been successfully ...

    STTR Phase II 2017 Department of DefenseNavy
  2. Detection Avoidance System for Submarines (DASS)

    SBC: DANIEL H. WAGNER ASSOCIATES, INCORPORATED            Topic: N14AT016

    In this STTR, Daniel H. Wagner Associates, together with the University of Michigan (UM), will develop a Detection Avoidance System for Submarines (DASS). The proposed DASS is a set of software modules which solves the probabilistic passive sonar equation (PSE) using given environmental acoustic data, assesses submarine vulnerability based on intelligence about potential threat ASW assets, recomme ...

    STTR Phase II 2016 Department of DefenseNavy
  3. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    Systems that operate in constrained environments depend on the acoustics in several ways. Harbor defense systems detect intruders (peopleand/or vessels) by either listening for their noises (passively) or by pinging on them and detecting their echoes (actively). Furthermore, suchsystems may also form the equivalent of an underwater cell phone network using sound to carry the information. The acous ...

    STTR Phase II 2017 Department of DefenseNavy
  4. Nanocomposite Scandate Tungsten Powder for High Current Density and Long Life Thermionic Cathodes

    SBC: Vacuum Process Engineering, Inc.            Topic: N15AT010

    Vacuum Process Engineering, Inc. (VPE), in collaboration with the University of California, Davis (UC Davis), proposes to develop and quantitatively verify a large scale production process for scandate tungsten nanocomposite powder to be used in high current density and long life cathodes during the Phase II effort. The plan for implementation of the large scale production process at VPE with powd ...

    STTR Phase II 2017 Department of DefenseNavy
  5. Data Driven Intent Recognition Framework

    SBC: Other Lab Inc.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
  6. Reliable Manufacturing of Scandia-doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this Phase II STTR effort, nGimat will partner with the University of Kentucky (UK) and 3M/Ceradyne to continue development of W-scandate cathode composite materials. Compared to conventional M-type cathodes, these composite scandate nanomaterials will enable longer cathode lifetime by lowering the required operating temperature. nGimat is an established and successful powder manufacturing comp ...

    STTR Phase II 2017 Department of DefenseNavy
  7. SOCRATES Maritime Multi-access Optical Communication System

    SBC: SA Photonics, Inc.            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition to threat search and tracking capability. SA Photonics will team with Prof. Michael Kudenov at North Carolina State University who will investigate ...

    STTR Phase II 2017 Department of DefenseNavy
  8. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  9. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: SA Photonics, Inc.            Topic: N15AT014

    SA Photonics has developed a concept for our Multiple Optical Beam Landing System (MOBLS) to provide autonomous landing of aircraft in RF denied environments. MOBLS utilizes multiple, redundant methods to determine the real-time location and bearing of the aircraft relative to the carrier-based landing strip. By having built in redundant modalities, MOBLS provides highly reliable landing informati ...

    STTR Phase II 2017 Department of DefenseNavy
  10. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to signify the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes b ...

    STTR Phase II 2017 Department of DefenseNavy
US Flag An Official Website of the United States Government