You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Prediction of Strutural Response and Fluid-Induced Vibration in Turbomachinery

    SBC: CFD Research Corporation            Topic: T102

    Advanced turbomachinery components play a critical role in launch vehicle and spacecraft liquid rocket propulsion systems. To achieve desired efficiencies, extremely tight tolerances are often imposed between inducer blades and shrouds or other system components which sets up strong interactions that influence both the aerodynamics and the structural performance of blades and vanes. These transien ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  2. Unified In-Space Propulsion Framework for Prediction of Plume-Induced Spacecraft Environments

    SBC: CFD Research Corporation            Topic: T102

    Chemical contamination of spacecraft components as well as thermal and force loading from firing liquid propellant thrusters are critical concerns for in-space propulsion applications. Gas molecular contamination and liquid droplet deposition due to incomplete combustion threaten to damage surface materials, sensitive instruments and optical sensors, and poses major risks for mission success. Liqu ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  3. Visualizing and Comparing Exploration Plan Alternatives and Change Effects (xPACE)

    SBC: Traclabs Inc.            Topic: T1101

    Future human space flight missions will take astronauts deeper into space and require increased crew independence from Earth-based flight controllers (crew autonomy). Consequently, they will need to perform more tasks and a greater diversity of tasks. A critical resource for meeting these challenges is greater reliance on robots that can operate with more autonomously [NASA Roadmap TA4]. Greater r ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  4. Mega-Watt Class High Voltage, Variable Frequency, Propulsor Power Unit

    SBC: Balcones Technologies LLC            Topic: T1501

    Balcones Technologies, LLC (BT) proposes to adapt technologies developed by and resident in BT and The University of Texas at Austin Center for Electromechanics (CEM) in the area of advanced high efficiency, high-power density motors/generators and propulsion power train systems to address SBIR 2016 Subtopic T15.01 Power Systems for Hybrid Electric Propulsion. In particular, our team will develop ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  5. In-Situ Spectroscopic Europa Explorer (ISEE)

    SBC: Honeybee Robotics, Ltd.            Topic: T803

    The US congress has instructed NASA to include a lander component in the next Europa mission. The mission has a target launch date of 2022, and its primary goal will be to search Europa?s icy surface for evidence of life that may persist within the ice shell or subsurface ocean. The Europa lander study specifically recommends a combination of a mass spectrometer and a Raman spectrometer to investi ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  6. A Cubesat Hyperspectral Imager

    SBC: NANOHMICS INC            Topic: T801

    Mapping spectrometers have been extremely useful in multiple NASA applications, from Earth climate monitoring to identifying hydrocarbon lakes on Titan. Traditionally, imaging spectroscopy systems are not only heavy but also large in order to accommodate the long path lengths needed for spectral separation. There are several varieties, such as push-broom and scanning imaging spectrometers, but h ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  7. Structural Nervous System

    SBC: Gloyer-Taylor Laboratories LLC            Topic: T1201

    GTL?s SNS technology aids in the operation of new or existing structural health monitoring (SHM) systems by integrating data and power pathways into the structure. The use of this technology within a composite structure would allow engineers to place sensors from an SHM system directly where they are needed on a structure with instant power. GTL?s SNS technology offers the potential for developers ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. Development of an Advanced Diamond TEC Cathode

    SBC: IOP Technologies LLC            Topic: T603

    NASA recognizes the importance of conservation, smart utilization and reuse of resources for their deep space missions to address the need for regeneration of air, water and waste with highly reliable systems to reduce mission payload. Additionally, energy for life support and other systems needs to be obtained from renewable energy sources or waste streams. In order to address NASA's requirements ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  9. Soft Robotic Manipulators with Enhanced Perception using Multimodal Sensory Skins

    SBC: Other Lab Inc.            Topic: T1101

    We propose that the key to robotic automation in unstructured environments is compliant robotic manipulators that can tolerate, sense, and leverage contact in a feedback loop. We will demonstrate an instrumented end-effector that will be capable of enhanced perception through observed and controlled contact. This approach requires: (i) a network of sensors capable of capturing the highly compliant ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. Active Radiation Shield

    SBC: Gloyer-Taylor Laboratories LLC            Topic: T301

    DEC-Shield technology offers the means to generate electric power from cosmic radiation sources and fuse dissimilar systems and functionality into a structural component to create a Multi-functional Structure (MFS). DEC-Shield integrated into MFS technology can be used to generate electric power and provide radiation protection in a space vehicle; even maximizing that protection by spreading the ...

    STTR Phase I 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government