You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Infectious Disease Diagnostics and Differentiation of Viral vs. Bacterial Infections for Point of Care Applications

    SBC: GENECAPTURE, INC.            Topic: CBD15C001

    The modern warfighter faces the constant threat of endemic infections, multi-drug resistant bacteria and Biological Warfare Agents. In order to provide accurate front-line treatment that will curtail the overuse of antibiotics, a rapid and robust molecula

    STTR Phase I 2016 Department of DefenseOffice for Chemical and Biological Defense
  2. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  3. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to show the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes big ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SENVOL LLC            Topic: N16AT022

    Additive manufacturing (AM) will reduce the delay times required in producing Naval parts that are no longer stocked. However, rapid qualification of parts is still a challenge when a limited number of components are required. To fully exploit the potential advantages of AM, a means of accurately addressing the reliability of AM components is required. By simulating the entire design-build-operati ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Reduced Cost, Repeatable, Improved Property Washout Tooling for Composite Fabrication

    SBC: NEVADA COMPOSITES INC            Topic: N16AT015

    Nevada Composites has developed Green-Aero(sm) toolinglightweight ceramic tooling that is stable under high pressure and long-duration cure cycles and can be washed out with water after cures to 370C (700F). Tools, whether single-sided or washout, have a composite-compatible CTE, provide tight tolerances, are reproducible, are stable to storage under ambient conditions, and are of affordable cost. ...

    STTR Phase I 2016 Department of DefenseNavy
  7. SOCRATES Maritime Multi-access Optical Communication and System

    SBC: SA PHOTONICS, LLC            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition threat search and track capability. SA Photonics will team with the Prof. Michal Lipson of the Lipson Nanophotonics Group at Columbia University wh ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Durable, Multifunctional, Thermal Barrier Coatings for Marine Gas Turbines

    SBC: RELIACOAT TECHNOLOGIES, LLC            Topic: N16AT019

    Due to high power density and durability, gas turbines provide significant benefits in terms of efficiency and performance that in recent years, marine gas turbines have been deployed in commercial and cruise ships. Marine gas turbine technologies are essentially extensions of aero-gas turbine technology. Aero, land and marine engines have been used successfully for decades, recently there have be ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government