You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Nonintrusive Detector of Acute Cognitive Strain (DACS)

    SBC: Quantum Applied Science And Research, Inc.            Topic: ST16C003

    Modern defense systems place high cognitive demands on warfighters, often taxing the limit of human capabilities and causing operators to suffer Acute Cognitive Strain (ACS), wherein performance deteriorates markedly, leading to a loss of situational awareness and control, and decrements in team cooperativity. ACS leads to physiological changes driven by sympathetic system activation, including i ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  2. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Stottler Henke Associates, Inc.            Topic: ST16C003

    We propose to investigate, in collaboration with the Massachusetts General Hospital Voice Center and Altec, Inc., the application of surface electromyography (sEMG) to assessing cognitive workload, strain, and overload. Specifically, sEMG sensors placed on the face and neck will detect emotional/motor responses to workload strain. The proposed effort will build on the substantial sEMG experience o ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  3. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Cognionics, Inc.            Topic: ST16C003

    This STTR project aims to assess the feasibility of using laryngeal EMG to detect operator workload and strain. Phase I will develop a wearable neckband device positioning an array of laryngeal EMG electrodes plus additional sensors for measuring masseter EMG, heart rate variability, GSR and estimated relative blood pressure. The neckband will be optimized to be both wearable, comfortable and resi ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  4. Analog Co-Processors for Complex System Simulation and Design

    SBC: Ocius Technologies LLC            Topic: ST15C002

    The solution of systems of both linear and non-linear partial differential equations (PDE) is important to many scientific problems, such as magnetohydrodynamic and non-linear acoustics. Application areas include computational electromagnetics, fusion en...

    STTR Phase II 2017 Department of DefenseDefense Advanced Research Projects Agency
  5. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD Research Corporation            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  6. Compact Laser Drivers for Photoconductive Semiconductor Switches (16-RD-863)

    SBC: UES, Inc.            Topic: DTRA16A004

    Compact Electromagnetic Pulse Module (EMP) capable of being arranged in series-parallel planar or cylindrical arrays is needed to simulate nuclear weapon effects. High gain optically triggered photoconductive semiconductor switches (PCSS) based on Gallium arsenide (GaAs) with low timing jitter enables the development of planar or phased arrays of modular EMP or High Power Microwave (HPM) sources. ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  7. Technology Transitioning of Phase II Scalable Adaptive Fiber-Array Elements (SAFARE)

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: AF12BT13

    The ongoing SAFARE STTR Phase II effort is focused on improving essential components for the high-energy coherently combined, fiber-based phased-array laser weapon system prototypes developed under the DARPA Excalibur program and significantly reduce system size, weight and required electrical power (SWaP). Fiber-array based laser weapons technology promises high power efficiency and reduced SWaP, ...

    STTR Phase II 2017 Department of DefenseDefense Advanced Research Projects Agency
  8. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: Reliable MicroSystems, LLC            Topic: DTRA16A003

    Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: Scientific Applications & Research Associates, Inc.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government