You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Hardened, Optically-Based Temperature Characterization of Detonation Environments

    SBC: SA PHOTONICS, LLC            Topic: DTRA19B001

    Improving the effectiveness of counter-WMD operations requires improved understanding of weapon-target interaction. Specifically, time-resolved measurements of temperature and composition are required to allow temporal evolution of a detonation fireball. To address this need, SA Photonics will develop MONITOR, a laser-based temperature diagnostic that will enable wide dynamic range temperature mea ...

    STTR Phase I 2020 Department of DefenseDefense Threat Reduction Agency
  2. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  4. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  8. Smart Femtosecond Fiber Laser Wound Healing System

    SBC: POLARONYX INC            Topic: DHP15B002

    Based on our success in developing the world first commercial high energy femtosecond fiber laser system and our leading proprietary technology development in ultrashort pulsed fiber laser material processing, PolarOnyx proposes, for the first time, a compact high energy fiber laser based smart wound healing tool to meet with the requirement of this DHP solicitation. It includes a high energy fs f ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  9. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government