You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Silicon Diode Switch for HPRF Systems

    SBC: RADIATION DETECTION TECHNOLOGIES, INC.            Topic: N15AT023

    The ultimate goal of the phase II effort is to build Si-based PCSS 10kV-modules and compare coupling of those modules to different microwave radiation technologies. The microwave radiating technologies include at least non-linear transmission lines and direct drive antenna; comparisons and system-level tradeoffs will be identified through normalized field measurements.

    STTR Phase II 2017 Department of DefenseNavy
  2. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: SA PHOTONICS, LLC            Topic: N15AT014

    SA Photonics has developed a concept for our Multiple Optical Beam Landing System (MOBLS) to provide autonomous landing of aircraft in RF denied environments. MOBLS utilizes multiple, redundant methods to determine the real-time location and bearing of the aircraft relative to the carrier-based landing strip. By having built in redundant modalities, MOBLS provides highly reliable landing informati ...

    STTR Phase II 2017 Department of DefenseNavy
  3. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  4. Auto-Docking Autonomous Burial Vehicle (AD-ABV)

    SBC: MAKAI OCEAN ENGINEERING INC            Topic: N11AT017

    Subsequent Phase II Proposal, extension of Phase II contract N00039-12-C-0082. This contract involves the development of an underwater vehicle that can reliably and autonomously interconnect power and data cables to undersea nodes after they have been deployed. The Auto-Docking Autonomous Burial Vehicle (AD-ABV) is a cable-connecting adaptation of Makai’s proven ABV, which has been successfully ...

    STTR Phase II 2017 Department of DefenseNavy
  5. Body-worn Wireless Physiological Monitoring Network

    SBC: Cognionics, Inc.            Topic: N13AT021

    This STTR Phase II proposal continues our work towards building a simple, high quality and unobtrusive mobile physiological sensor platform. The capabilities of the Phase I prototype will be expanded by adding sensors to further acquire SpO2 and respiration in addition to forming a body area network for data collection across multiple points on a subjects body. A software infrastructure will also ...

    STTR Phase II 2017 Department of DefenseNavy
  6. Bonded Joint Analysis Method

    SBC: M4 ENGINEERING, INC.            Topic: N12AT004

    During Phase I and Phase II, M4 Engineering, Inc. and Sandia National Laboratories have created a unique bonded joint analysis methodology and associated software. During Phase II.5, the developed techniques will be further enhanced and a fully functional commercial analysis code (SIMULIA/Abaqus) plug-in will be created. The software plug-in will make the advanced technology accessible to all leve ...

    STTR Phase II 2016 Department of DefenseNavy
  7. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navyâ ...

    STTR Phase II 2019 Department of DefenseNavy
  8. Conformal Additive Cellular Heat Exchanger Technology (CACHET)

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: N15AT019

    Technology Assessment & Transfer, Inc. and subcontractors propose novel, high performance additive manufactured (AM) heat exchangers for military systems. The AM process will allow for conformal, lightweight designs that optimize use of available space. Integrated computational materials engineering will be used to optimize the AM materials and process parameters, correlate material microstructure ...

    STTR Phase II 2017 Department of DefenseNavy
  9. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    Systems that operate in constrained environments depend on the acoustics in several ways. Harbor defense systems detect intruders (peopleand/or vessels) by either listening for their noises (passively) or by pinging on them and detecting their echoes (actively). Furthermore, suchsystems may also form the equivalent of an underwater cell phone network using sound to carry the information. The acous ...

    STTR Phase II 2017 Department of DefenseNavy
  10. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government