You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multi-Functional Nanotube-Based Sensor Array for Detecting Blood Coagulation Defects

    SBC: INNOSENSE CORPORATION            Topic: DHA19A001

    Defense Health Agency (DHA) is seeking a multi-functional diagnostic to determine blood coagulopathy in real time at point-of-care (POC). Blood coagulopathy, resulting in uncontrolled bleeding, is implicated in 80% of operating room deaths and 50% of trau

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  2. POC Blood Coagulopathy Monitor

    SBC: CFD RESEARCH CORPORATION            Topic: DHA19A001

    Traumatic injuries account for 30% of all life years lost in the US and is the leading cause of death for people under 46 years of age. Uncontrolled bleeding or hemorrhage constitute 30-40% of trauma related deaths and are considered to be a major cause o

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  3. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  4. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  5. ECCCHO: Effective Combat Casualty Care Handoff Operations

    SBC: TIER 1 PERFORMANCE SOLUTIONS LLC            Topic: DHA17B002

    Approximately 70% of sentinel events in medical care are related to communication mishaps, and despite regular and frequent occurrence, an even higher percentage (80%) of severe medical errors are related to miscommunication during handoffs (i.e., the transferring of information, responsibility, and authority for patient care from one provider to another). The TiER1 team proposes to address challe ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. Compact Laser Drivers for Photoconductive Semicond

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  7. Hierarchical, Layout-Aware, Radiation Effects Tools Vertically Integrated into an EDA Design Flow for Rad-Hard by Design

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    The goal of this workis to establish a radiation-aware capability in a commercial EDA design flow that will enable first-pass success in radiation resiliency for DoD ASIC designs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications.Such an integrated capability does not presently exist.The ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  8. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  10. Production of Chemical Reagents for Prompt-Agent-Defeat Weapons

    SBC: NALAS ENGINEERING SERVICES INC            Topic: DTRA14B001

    Nalas Engineering and Johns Hopkins University collaborated in a Phase I STTR program to study reactive mixtures of HI3O8 and nanocomposite fuels previously developed by the Weihs Group. These fuel/oxidizer mixtures are uniquely able to simultaneously produce heat and biocidal iodine gas, a combination designed to destroy biological weapons. The team at Nalas focused on evaluating conditions for p ...

    STTR Phase II 2017 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government