You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  2. Two-color Infrared Laser Arrays for Scene Projection

    SBC: ATTOLLO ENGINEERING, LLC            Topic: A17AT018

    Current scene projection hardware is challenged to simultaneously meet the requirements for high peak temperature (> 2000K), high resolution (> 1Kx1K), response time < 1 ms, cryogenic and temporally uniform photon flux. MEMS, Resistor arrays, liquid crystals, and photonic crystals all suffer in one or more areas. MEMS suffer from flicker and low dynamic range. Resistor arrays suffer from low frame ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Fast Optical Limiters (OL) with Enhanced Dynamic Range

    SBC: Aegis Technologies Group, LLC, The            Topic: AF17AT029

    Current fielded sensor protection is limited to fixed wavelength filters. Broadband filters designed to circumvent multi-wavelength laser threats are plagued by low transmittance, which degrades the sensitivity and performance of the sensor. Future warfighter threats include frequency agile lasers and thus have the potential of defeating fixed filters. Self-activating (passive) devices where prote ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF17AT018

    The focus of this STTR program is the development and maturation of a novel, room-temperature process to fabricate multi-layer metal-polymer (including PVDF and other smart materials) composites in an additive approach. This overcomes the limitation arising from the large temperature difference between metal and polymer manufacturing processes, and presents a new technology for additive manufactur ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Flexible Broad-band Optical Device

    SBC: OCEANIT LABORATORIES INC            Topic: AF17AT010

    Oceanit proposes to first is to use radiative transfer techniques pioneered for astrophysics, instead of Monte Carlo simulation. In particular, we used a variant of the Bohm-Vitense method, which expresses the solution as a weighted sum of basis functions, allowing us to convert the radiative transfer equation into a set of linear equations that we can solve with standard linear algebra methods. S ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Alternative Methods for Creating a Sodium Guidestar

    SBC: Crystalline Mirror Solutions, LLC            Topic: AF17AT005

    The development of compact and telescope-deployable laser sources emitting in the yellow portion of the visible spectrum is critical for the advancement of DoD-relevant adaptive optics capabilities. The objective of this project is to continue the development of novel laser architectures based on optically-pumped substrate-transferred epitaxial gain media capable of efficient thermal management an ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Unified sensor for atmospheric turbulence and refractivity characterization

    SBC: G. A. Tyler Associates, Inc.            Topic: AF17AT008

    In this effort, tOSC and the University of New Mexico COSMIAC (Configurable Space Microsystems Innovation Applications Center) will combine to generate a Target-in-the-Loop (TIL) system concept that can simultaneously measure the strength of atmospheric turbulence and scintillation, as well as the refractivity occurring at the measurement time. For this system concept, we will leverage existing tO ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. Alternative Methods for Creating a Sodium Guidestar

    SBC: Arete Associates            Topic: AF17AT005

    Adaptive Optics allow ground-based astronomical observatories to overcome atmospheric distortion limited observation by using natural and artificial guide stars to measure the distortion. Sodium-layer guide stars provide near all-sky coverage for high resolution astronomy. Over the last 20 years, Optically Pumped Semiconductor Laser (OPSL), also referred to as Vertically Extended Cavity Surface Em ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Holistic Interoperable Directional Data Enhancement Network

    SBC: FUSE INTEGRATION, INC.            Topic: AF17BT003

    Currently fielded multi-beam CDL systems have been developed in an ad-hoc manner consisting of a collection of poorly integrated off the shelf technologies where controllers, radios, routers, firewalls, encryptors, and antennas are bolted together to reduce time to field. Proprietary API’s, electrical interfaces, and hardware interfaces impede the success of the approach and result in a sub ...

    STTR Phase II 2019 Department of DefenseAir Force
  10. Computationally Efficient, Accurate and Uncertainty Characterized Chemical Kinetics for Hydrocarbon Fuels

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT004

    High-pressure turbulent combustion occurs in many combustion devices critical to the Air Force. Notwithstanding significant progress in computational modeling of these devices; several challenges have remained. A fundamental challenge is identification of reaction pathways and reactions in small molecule foundational chemical kinetics requiring improvements under these high-pressure turbulent cond ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government