You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: Q-CHEM INC            Topic: A14AT013

    The variational two-electron reduced-density matrix (v2RDM) method provides an effective framework for computer modeling of the electronic structure of complex molecules and materials that exhibit strong correlation effects. In Phase I and Phase II of this STTR we have demonstrated that the GPU-accelerated implementation of the v2RDM-based complete active space self-consistent field (v2RDM-CASSCF) ...

    STTR Phase II 2019 Department of DefenseArmy
  2. Pulse Voltammetry Tools for Accurate and Rapid Analysis of Batteries

    SBC: CFD RESEARCH CORPORATION            Topic: A152092

    Pulse voltammetry techniques, coupled with model-based analysis tools, provide a number of advantages for quantitative analysis of electrochemically active materials that govern the performance of batteries and fuel cells. In prior Phase I and II research, CFD Research developed and validated computational models in software that reads voltammogram data from laboratory instruments; predicts the re ...

    STTR Phase II 2019 Department of DefenseArmy
  3. RODEO: Roll-Over Detection for Equipment-transporter Operation

    SBC: Intelligent Automation, Inc.            Topic: A18BT025

    To gain tactical advantages over adversaries in dismounted operations, infantrymen are often required to carry heavy loads on themselves. However, enduring a long distance walk while carrying a heavy march load is notorious for quickly exhausting the Solider, which consequently impedes the OPTEMPO of the troop. Addressing this problem, the Army is seeking a robust unmanned ground vehicle that can ...

    STTR Phase I 2019 Department of DefenseArmy
  4. Carbon Nanotube Based Monolithic Millimeter-wave Integrated Circuits

    SBC: Carbonics, Inc.            Topic: A18BT004

    Within this STTR program, Carbonics will partner with USC to commercialize CNTFET based transistor technology that is compatible with wafer-scale monolithic integration process flows whilst offering exceptional performance at mm-Wave frequencies that can outperform incumbent semiconductor high frequency technologies (GaAs, SiGe, RF-CMOS).

    STTR Phase I 2019 Department of DefenseArmy
  5. High Linearity RF Amplifiers from Carbon Nanotubes

    SBC: CARBON TECHNOLOGY INC            Topic: A18BT004

    The Key to further improving the data rate in data communication while minimizing the power consumption is to improve the linearity of a power amplifiers in the system. Carbon Nanotube (CNT) offer intrinsically linear behavior, but to realize advanced linearity in a practical device requires high quality CNT material, and a fabrication process that can take the full advantage of the superior prope ...

    STTR Phase I 2019 Department of DefenseArmy
  6. Carbon Nanotube Based Monolithic Millimeter-wave Integrated Circuits

    SBC: ATOM INC            Topic: A18BT004

    In this project, we propose to develop a high-performance carbon nanotube (CNT) based millimeter-wave transistor technology and demonstrate monolithic millimeter-wave integrated circuits (MMICs) based on this technology with improved power efficiency, linearity, noise and dynamic range performance over existing GaAs, SiGe and RF-CMOS technologies. The goal of this topic is to leverage Professor St ...

    STTR Phase I 2019 Department of DefenseArmy
  7. Deep Ultraviolet Light Sources for Water Purification and Surface Sterilization

    SBC: TRIPLE RING TECHNOLOGIES INC            Topic: A18BT006

    This proposal is related to the development of high efficiency ultraviolet (UV) light emitting devices (LEDs) operating at 265 nm and 219 nm, which have the potential to replace conventional mercury lamps for many applications including dinsinfection and water purification. To date, the wall-plug efficiency of commercial LEDs operating at 265 nm is in the range of 2-3%, which has been limited by t ...

    STTR Phase I 2019 Department of DefenseArmy
  8. DRAGONS – Dynamic Resource Allocation Gains for Operational Networked Sharing

    SBC: Intelligent Automation, Inc.            Topic: A18BT007

    Sharing platforms have already transformed some sectors of civilian logistics, promoting the efficient utilization of resources, such as cars and bicycles. Sharing resources is particularly desirable when those resources are costly, and high utilization is critical, characteristics often observed in military settings. In order to address specific constraints imposed by military applications on res ...

    STTR Phase I 2019 Department of DefenseArmy
  9. Optimization based expanded dictionary adaptive antenna array modeling for far field low frequency propagation

    SBC: Intelligent Automation, Inc.            Topic: A18BT009

    Leveraging existing multi-frequency antenna arrays for purposes they were not originally designed would greatly improve the benefits of such systems. For example, the use of arrays of small antennas with novel waveforms may produce low frequency signals in the far field that are not possible using single antennas and classical waveforms. In particular, we propose to investigate the formation of lo ...

    STTR Phase I 2019 Department of DefenseArmy
  10. Mitigation of Ransomware

    SBC: OCEANIT LABORATORIES INC            Topic: A18BT010

    In this Phase I SBIR, Oceanit in partnership with the University of Michigan, will create a highly effective end-to-end technology solution that mitigates the threats that ransomware poses to computer memory systems. By providing a more effective recovery from attacks, our solution will enhance the operational readiness and resiliency of Army and DoD information systems.

    STTR Phase I 2019 Department of DefenseArmy
US Flag An Official Website of the United States Government