You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multiple Hit Performance of Small Arms Protective Armor

    SBC: TRANSPARENT ARMOR SOLUTIONS INC.            Topic: A14AT017

    This proposal will investigate body armor systems to the effects of burst fire. In Phase I, the team of researchers will investigate the spatial distribution of impacts of common burst fire capable rifles, demonstrate a statistical analysis technique, and demonstrate a ballistic model approach while applying this research to a surrogate body armor solution. The program will begin with an analysi ...

    STTR Phase I 2015 Department of DefenseArmy
  2. Ultra-Coherent Semiconductor Laser Technology

    SBC: TELARIS INC            Topic: A14AT005

    Spontaneous emission is a quantum mechanical process that represents the main source of phase noise in state-of-the-art semiconductor lasers, limiting their coherence, and their suitability for high-speed communication and sensing applications. This proposal aims to develop ultra-high coherence semiconductor lasers on the Silicon/III-V platform with a quantum linewidth of

    STTR Phase II 2015 Department of DefenseArmy
  3. Advanced Printed Circuit Board Design Methods for Compact Optical Transceiver

    SBC: ATTOLLO ENGINEERING, LLC            Topic: A15AT001

    As the warfighter is increasingly using more highly integrated instruments, e.g. a laser rangefinder (LRF) combined with a laser designator and an imager, the need to decrease the size of these components becomes more important. Compact small munition applications of rangefinders particularly place an emphasis on size of the optical front end. In order to make the transceiver more compact, speci ...

    STTR Phase I 2015 Department of DefenseArmy
  4. Terahertz Nano-Radio Platform with Integrated Antenna and Power source

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for nano-scaled ultra-low-power low-cost radios to address field-deployable and massively producible sensing and communication networks in future military and commercial applications. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by exploiting the holistic integration of THz radio transceiver system, on-chip antenna ...

    STTR Phase I 2015 Department of DefenseArmy
  5. Terahertz Nano-Radio Platform with Integrated Antenna and Power source

    SBC: CREONEX SYSTEMS INC.            Topic: A15AT005

    Recent demand for short-range communications has risen sharply for both the defense and commercial sectors. Tactical communications with a deployed sensor network require secure short-range communications and high network density to enable robust data fusion and collaborative sensing for enhanced situation awareness for the war fighters. The THz nano-radio technology being developed in this projec ...

    STTR Phase I 2015 Department of DefenseArmy
  6. System for Precision Direction-Finding, Anti-Jam and Anti-Spoof

    SBC: TOYON RESEARCH CORPORATION            Topic: A15AT013

    Assured position, navigation and time (PNT) require constant vigilance against intentional and unintentional sources of coherent and non-coherent interference. The Global Positioning System (GPS) is especially vulnerable to attacks and must be defended through electronic protection (EP) measures such as anti-jam (AJ) and anti-spoof (AS). The proposed effort will design and demonstrate GPS-based at ...

    STTR Phase I 2015 Department of DefenseArmy
  7. Tunable Active HEterodyne Terahertz Imager (TAHETI)

    SBC: LONGWAVE PHOTONICS LLC            Topic: A17AT007

    LongWave Photonics, Massachusetts Institute of Technology and Virginia Diodes are proposing the use of the Terahertz Quantum-Cascade Lasers (QCL) combined with a Schottky diode detector for high dynamic range heterodyne imaging. Two single-mode, distributed feedback (DFB) QCLs with milliwatt power levels will be used as local oscillator and illumination for imaging. The QCLs will be downconverte ...

    STTR Phase I 2017 Department of DefenseArmy
  8. 3D Tomographic Scanning Microwave Microscopy with Nanometer Resolution

    SBC: Alcatera Inc.            Topic: A17AT008

    Near-Field Scanning Microwave Microscopy (SMM) is a technique relying on a raster scan of a microwave probe across a sample surface, while measuring its reflected microwave signal. The existing technologies are limited to the surface analysis, and are not compatible with liquid environment. These limitations are addressed by the proposed wideband 3D tomography SMM with sub-surface analysis capabil ...

    STTR Phase I 2017 Department of DefenseArmy
  9. Developing a Clostridium molecular toolkit for bioconversion of food waste

    SBC: SYNVITROBIO, INC.            Topic: A17AT011

    Waste generation at forward bases creates significant challenges; its disposal presents an economic cost with no direct benefit and its accumulation or burning is a health hazard. The bioconversion of waste into useful compounds could save thousands annually for every soldier and tens of millions in capital expenditure. However, widespread adoption is impeded by low conversion efficiency. We propo ...

    STTR Phase I 2017 Department of DefenseArmy
  10. Biosensor for Detection of Synthetic Cannabinoids

    SBC: NANOCOMPOSIX, INC.            Topic: A17AT014

    Recreational drug use by military personnel can impact soldier preparedness and performance especially in difficult and demanding environments. One challenge for monitoring illicit drug use is that current tests rely on the identification of specific chemical structures. Small variants in the chemistry of a drug can evade detection. In this Phase I SBIR, we will develop a lateral flow test that ...

    STTR Phase I 2017 Department of DefenseArmy
US Flag An Official Website of the United States Government