You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD Research Corporation            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is critical to detect the proliferation of nuclear material. Critical challenges facing this objective include: (a) high sensitivity detection of signature emissions (e.g., gamma rays) from common radioactive isotopes behind shielding, and (b) cost-effe ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  2. An Ultra-Compact Low-Power THz Radio SoC with On-Chip Antenna and Energy Harvesting

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for ultra-low-power, ultra-compact and low-cost radios to address emerging sensing and communication needs for military and commercial applications such as IoT/IoE. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by integration of a nano-scaled THz transceiver, on-chip antenna, and energy harvesting circuits in a form ...

    STTR Phase II 2016 Department of DefenseArmy
  3. Biofidelic Rat Testing Device (RTD) to Measure Blast Exposure and Loadings for TBI

    SBC: CFD Research Corporation            Topic: A17AT022

    The overall objective of this project (Phase I, II, and III) is to develop, fabricate, and test a novel biofidelic rat surrogate for the validation of primary blast loading conditions for mild traumatic brain injury (mTBI). The CFDRC/NJIT team will use extensive knowledge of blast loading characteristics and TBI studies coupled with past/ongoing efforts designing and testing a rat surrogate. In P ...

    STTR Phase I 2017 Department of DefenseArmy
  4. Chemical Kinetic Pathway Effects in Turbulent Reacting Flows

    SBC: REACTION SYSTEMS, INC            Topic: A16AT001

    The Army is very interested in accurate simulations of combustion in devices such as rockets and gas turbines, Otto and Diesel cycle IC engines, scramjet engines, rotating detonation engines, etc.The performance of weapons systems using these devices directly affect casualty/loss rates and the ability to win wars as well as procurement decisions and program costs. Accurate and computationally-affo ...

    STTR Phase II 2017 Department of DefenseArmy
  5. Compact Laser Drivers for Photoconductive Semiconductor Switches

    SBC: ASR Corporation            Topic: DTRA16A004

    A compact laser driver will allow photoconductive semiconductor switches to be used in small EMP simulator "building blocks" (EMPBB). Combined with a battery powered on-board pulsed power system, these EMPBBs will allow the construction of flexible EMP test facilities with nothing more than a single fiber optic timing connection to each EMPBB.

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Dismounted Soldier Positioning, Navigation and Timing (PNT) System Initialization

    SBC: INTEGRATED SOLUTIONS FOR SYSTEMS INC            Topic: A17AT017

    Integrated Solutions for Systems, Inc. (IS4S) and teammate Auburn University (AU) propose to develop a PNT initialization system for dismounted soldiers. The proposed system will enhance warfighters ability to operate immediately in a GPS denied environments once their mission begins and has wide commercialization potential outside of DoD. In Phase I, the feasibility and expected benefits of inte ...

    STTR Phase I 2017 Department of DefenseArmy
  7. Energy Harvesting Fabric

    SBC: Streamline Automation, LLC            Topic: A15AT017

    A human produces more than 100 Watts of waste heat during normal activity. If a fraction of this heat energy can be harvested it can replace the stored chemical energy in one or more of the batteries typically carried by soldiers in the field. The current generation batteries, such as the BB2590 are bulky and rigid. The PowerFelt material developed by Wake Forest University is ideally suited for h ...

    STTR Phase I 2016 Department of DefenseArmy
  8. Freeze Casting of Tubular Sulfur Tolerant Materials for Solid Oxide Fuel Cells

    SBC: Millennitek, LLC            Topic: A14AT011

    Solid oxide fuel cells have long suffered from degradation due to impurities in the fuel and complexities associated with dissimilar materials and high operating temperatures.This degradation lowers the usable cell power output and requires ancillary equipment for fuel sulfur removal and reformation.A unique microstructure for the tubular anode will be produced using a novel freeze-casting techniq ...

    STTR Phase II 2017 Department of DefenseArmy
  9. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Green Diode Lasers (480-550 nm Spectral Regime)

    SBC: EPITAXIAL LABORATORY INC            Topic: A16AT003

    Despite their broad applications, up to date, diode pumped solid state green lasers are almost exclusively dominate the market due to the lack of low defect or defect-free semiconductor materials with high efficiency at green wavelength (480-550nm). We propose to develop compact, high efficiency, and high brightness III-nitride based green lasers. In phase I, we will focus on design, epitaxial gro ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government