You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Printed, Flexible Ultracapacitors Based on Novel, High-Performance Carbon Nanomaterials (1000-298)

    SBC: SI2 TECHNOLOGIES, INC            Topic: A13AT003

    SI2 Technologies, Inc. (SI2) and Drexel University propose to develop printed, flexible, high-performance ultracapacitors to meet the Armys need for lightweight energy storage. SI2 will leverage its demonstrated expertise in ink jet printing and Drexels expertise with carbon nanoparticle synthesis. SI2 has considerable experience in the roll-to-roll deposition of conductive ink patterns. These ...

    STTR Phase II 2015 Department of DefenseArmy
  2. Multifunctional Textile Coating of Military Fabrics

    SBC: MATERIALS MODIFICATIONS INC            Topic: A13AT020

    "US Armys combat uniform systems currently use NyCo fabrics which are made using a 50% nylon/50% cotton blend. Army Combat Utility (ACU) uniforms have excellent comfort and durability but lack flame resistance (FR). The US Army relies on expensive FR fabrics for protecting warfighters against fire hazards. These FR fabrics are typically made using specialty fibers such as Lenzing FR rayon fibers a ...

    STTR Phase II 2015 Department of DefenseArmy
  3. Multiferroic Materials for RF Applications

    SBC: WINCHESTER TECHNOLOGIES LLC            Topic: ST13B003

    Built upon the progress in Phase I period, Winchester Technologies, LLC is pleased to propose to investigate practical magnetoelectric antennas during the Phase II period based on solidly mounted resonators (SMR), which will have enormous impacts on DoD and civilian antenna applications. State of the art antennas suffer from three major open challenges: (1) large antenna size > ?0/10, (2) antenna ...

    STTR Phase II 2019 Department of DefenseArmy
  4. Conformal Passivation of High Aspect Ratio HgCdTe Surfaces by ALD Using a Novel Cd-Precursor

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: A13AT013

    "HgCdTe is the material of choice for high performance infrared red focal plane arrays (IRFPA) used in militarys night vision systems. One of the major problems IRFPA manufacturers face is the ineffective passivation of the highly reticulated HgCdTe detector surfaces, which results in poor performance. Furthermore, newly evolved FPA technology requires the creation of much challenging high-aspect ...

    STTR Phase II 2015 Department of DefenseArmy
  5. Pulse Voltammetry Tools for Accurate and Rapid Analysis of Batteries

    SBC: CFD RESEARCH CORPORATION            Topic: A152092

    Pulse voltammetry techniques, coupled with model-based analysis tools, provide a number of advantages for quantitative analysis of electrochemically active materials that govern the performance of batteries and fuel cells. In prior Phase I and II research, CFD Research developed and validated computational models in software that reads voltammogram data from laboratory instruments; predicts the re ...

    STTR Phase II 2019 Department of DefenseArmy
  6. Compressive Spectral Video in the LWIR

    SBC: PHYSICAL SCIENCES INC.            Topic: A13AT015

    Physical Sciences, Inc. and Colorado State University will advance the technical maturity of the Compressive Sensing Hyperspectral Imager (CS-HSI) platform. The CS-HSI operates in the longwave infrared (LWIR) spectral range with a single-pixel architecture for low-cost, standoff wide area Early Warning of chemical vapor plumes. The motivation for applying CS to LWIR HSI is to eliminate the high-co ...

    STTR Phase II 2019 Department of DefenseArmy
  7. Pathogen Specific Antimicrobial Coatings For Fabrics

    SBC: GINER INC            Topic: A14AT012

    Antimicrobial treatment of military textile systems is intended to provide enhanced protection to the Warfighter in the field by preventing colonization of harmful bacteria that cause problems such as odor, dermatitis, impetigo, cellulitis, and other skin irritations. Current treatments can impart antimicrobial functionality to textiles; however, they all possess broad-spectrum antimicrobial activ ...

    STTR Phase II 2015 Department of DefenseArmy
  8. High-Performance Magnesium Alloys and Composites by Efficient Vapor Phase Processing

    SBC: Directed Vapor Technologies International, Inc.            Topic: A14AT007

    The low density of magnesium makes it of interest for the development of advanced materials having high specific strength and stiffness. Current Mg applications, however, are limited by the performance and cost/quality relationships of existing Mg-alloy systems. One approach to obtain improved Mg alloys is through the development of new alloys and/or Mg-based composite materials that are enabled t ...

    STTR Phase II 2015 Department of DefenseArmy
  9. Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: EOS Photonics            Topic: A14AT015

    To achieve the goals of this program improving spectral coverage and output power of monolithic QCL sources - we propose to develop in collaboration with MIT Lincoln Laboratory a broadly tunable high power source that is based on Eos proprietary QCL array technology. The current generation of Eos commercially available fully packaged QCLAs (The Matchbox) can be tuned over a wavelength range of u ...

    STTR Phase II 2016 Department of DefenseArmy
  10. No Power Bionic Lower Extremity Prostheses

    SBC: LIBERATING TECHNOLOGIES INC            Topic: DHP16C007

    Current prosthetic feet produce much less peak mechanical power than the able-bodied foot/ankle and release only about half of the mechanical energy generated during gait. This leads to higher energy expenditure among amputees as compared to able-bodied i

    STTR Phase II 2019 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government