You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Multi-scale Physics-based Modeling of Particle-Impact Erosion of CMCs

    SBC: CFD Research Corporation            Topic: N19BT033

    Sand particles ingested into aeroengines can impinge on components made of ceramic-matrix composites (CMCs) and cause structural damage including long-term erosion. Experimental analysis of erosion typically focuses on the damage footprint and mass loss and is limited in the range of operating parameters that can be examined. Hence, high-fidelity modeling of the erosion process is essential to der ...

    STTR Phase I 2020 Department of DefenseNavy
  2. Advanced, High-Performance, Low-Noise Propeller Designs for Small UxS

    SBC: CFD Research Corporation            Topic: N20AT006

    Improved propeller designs for Small Unmanned Aerial Systems are needed to improve performance and reduce acoustic emissions. Traditional propeller design methods don’t take advantage of advances in coupled fluid, structure and acoustics computational design methods nor advances in high strength, high modulus materials to extend performance of propellers and reduce noise emissions. In the propos ...

    STTR Phase I 2020 Department of DefenseNavy
  3. Hybrid Integration of Photonics and Cryogenic Electronics with Magnetic Shielding

    SBC: Systems Visions, LLC            Topic: N20AT021

    The "Hybrid Integration of Photonics and Cryogenic Electronics with Magnetic Shielding (HIPCEMS)” effort will develop a scalable heterogeneous packaging plan which results in extreme energy efficiency information transfer at high clock rates and low bit error rate of digital data between superconducting and photonic technologies, each at 4K. HIPCEMS will feature a mechanically robust package tha ...

    STTR Phase I 2020 Department of DefenseNavy
  4. Reduction of Predictable Spurs in the ADC outputs using AI

    SBC: VIRTUAL EM INC.            Topic: N20AT025

    An AI-based algorithm is being proposed to increase ADC linearity by 10dB. Neural Nets will be investigated in conjunction with models of spurs to accomplish the task.

    STTR Phase I 2020 Department of DefenseNavy
  5. Advanced Electromagnetic Modeling with High Geometric Fidelity Using High-Order Curved Elements

    SBC: VIRTUAL EM INC.            Topic: N20BT028

    Virtual EM is proposing a method to achieve orders of magnitude improvement in computational efficiency in full-wave CEM codes by using high-order curved elements. Virtual EM’s own commercial product VirAntenn™ will provide the CEM setting for both developing and implementing the new capability in Phase I and Phase II, respectively. Using multi-wavelength long cells with high-order basis forms ...

    STTR Phase I 2020 Department of DefenseNavy
  6. Geometry-Perfect CEM Design and Analysis Software for Aircraft Systems

    SBC: IERUS TECHNOLOGIES, INC            Topic: N20BT028

    Performing accurate simulations of large- and multi-scale electromagnetics problems has far-reaching implications in a variety of engineering and scientific disciplines. The same physics governs a diversity of applications including problems of importance for NAVAIR such as complex radome-antenna and antenna-platform interactions.  Such simulation problems involve complex materials, multiple feed ...

    STTR Phase I 2020 Department of DefenseNavy
  7. Neurofeedback Training and Hyperscanning for Mission Readiness and Return-to-Duty via Functional Near-Infrared Spectrometry (fNIRS)

    SBC: SOAR TECHNOLOGY INC            Topic: DHA19B001

    Until now,much of theresearch usingfunctional near-infrared spectroscopy (fNIRS) has focused on tailoringasystem to detect onlyafew cognitivestatesand theapplication of theseapproaches outsidethe laboratory is not well tested. This solution provides severely limited coverage of thespacethat this technology could beapplied to,and is notarealistic path for developing neuroimagingasan operational ass ...

    STTR Phase I 2020 Department of DefenseDefense Health Agency
  8. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  9. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: IBC Materials & Technologies, LLC            Topic: N16AT005

    In this proposed SBIR program, IBC Materials & Technologies, in conjunction with our industry partner Mechanical Solutions, Inc. (MSI) and Texas A&M University, will leverage our knowledge and experience in the domain of industrial metallic coatings to develop a metallurgical coating solution for the Air Foil Bearing. IBC has deep expertise in a variety of industrial coating processes including mu ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: Avomeen, LLC            Topic: N16AT008

    In the Phase-I project Avomeen LLC will advance the manufacturing technology that has already developed thermally stable separators in-house. In Phase I project, Avomeen will develop thermally stable separator and related low cost manufacturing process to achieve high energy/power density lithium ion batteries with enhanced safety. Currently micro-porous material and glass material are using as a ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government