You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD Research Corporation            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  2. Real-Time Validation of Machine Intelligence Controlling Unmanned Vehicle Autonomous Operations

    SBC: XL Scientific, LLC            Topic: N18BT032

    To realize the full potential of autonomous systems, it is imperative that they behave safely, correctly, ethically, and legally. Providing these assurances through offline verification alone is insufficient, due to the complex and changing nature of autonomous systems. Online monitoring and corrective actions are necessary to account for uncertainties, and to increase trust between a human superv ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Optimized Higher Power Microwave Sources

    SBC: XL Scientific, LLC            Topic: N19AT001

    Verus Research and the University of New Mexico (UNM) are pleased to respond to the Navy Phase I STTR solicitation N19A-T001 titled “Optimized Higher Power Microwave Sources.” Verus Research, in collaboration with UNM, propose to develop a GW-class, S-band, high power microwave (HPM) source to integrate in vehicle and vessel stopping systems. Our integrated approach ensures the objectives for ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: Mantel Technologies, Inc.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  5. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: E H Group, Inc.            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Data Analytics and Machine Learning Toolkit to Accelerate Materials Design and Processing Development

    SBC: CFD Research Corporation            Topic: N19AT020

    Navy has identified refractory high entropy alloy (RHEA) and metal additive manufacturing as two potential areas of interest. This includes designing new RHEA and optimizing metal additive manufacturing with specific material property requirements. Developing materials and processes via applying traditional experimentation and process optimization techniques is painfully slow due to the large numb ...

    STTR Phase I 2019 Department of DefenseNavy
  8. A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems

    SBC: CFD Research Corporation            Topic: N19BT025

    The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Large Eddy Simulation (LES) Flow Solver Suitable for Modeling Conjugate Heat Transfer

    SBC: Kord Technologies, Inc.            Topic: N19BT027

    Accurate prediction heat transfer in gas turbine components subject to cooling requires high fidelity modeling of heat transfer in the presence of high Reynolds number turbulent flow. The cooling internal to the blades results in sustained temperature gradients within the structural parts, from low temperature in the interior of the structure to increasingly higher temperature closer to the surfac ...

    STTR Phase I 2019 Department of DefenseNavy
  10. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: E H Group, Inc.            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government