You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Adaptive Closure Models for Large Eddy Simulations of Lean Blow-Out Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF16AT14

    The objective of the proposed Phase II effort is to establish fundamental understanding of combustion-physical mechanisms leading to blowout, the critical evaluation of model limitations in predicting these blowout processes and the development of an improved combustion model to enable the prediction of lean blowout (LBO) in swirl-stabilized combustors. For this, high-resolution numerical simulati ...

    STTR Phase II 2017 Department of DefenseAir Force
  2. RF-IR Data Fusion

    SBC: DECIBEL RESEARCH, INC.            Topic: MDA12T002

    deciBel Research, Inc. and the Electrical Engineering Department at the University of Mississippi - the deciBel Team - proposes to continue to develop and mature threat physics based classification, track association/track correlation, and dynamic attributes determination threat characterization algorithms that effectively and efficiently fuse data from multiple sensors. The classification algorit ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  3. veriScan

    SBC: SENTAR, INC.            Topic: OSD06SP2

    The goal of the Information Assurance Run-time Auditing (IARA) Phase I project was to provide a framework that promotes the specification of software system monitoring, audit, analysis, and threat mitigation capabilities in large scale software intensive systems (LSSIS). IARA was designed to promote software assurance by incorporating novel tools that help certify the operations of untrusted soft ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  4. System of Systems Control Interactions

    SBC: GTD Unlimited LLC            Topic: MDA15T002

    In this research effort, the GTD team will design tools for efficiently specifying, representing, and analyzing the interactions between control systems in System of Systems (SoS). Three approaches will be considered and integrated. The first two are based in the rigorous application of H_8 control theory to the SoS design problem. The third will use complexity measures to generate a metric that c ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  5. Advanced Hit Detection Systems

    SBC: FREENT TECHNOLOGIES, INC.            Topic: MDA13015

    FreEnt Technologies, Inc. (FreEnt) and Johns Hopkins Universitys Applied Physics Laboratory (APL) are proposing a multiple-hit detection sensor called the Optical Lethality Measurement System (OLMS). This system is based on the Planar Optical Penetration Sensor (POPS) technology (originally developed and patented by APL) and prior art associated with the Blast Initiation Detector (BID). The BID is ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  6. Vortex Preserving and Consistent Large Eddy Simulations for Naval Applications

    SBC: Kord Technologies, Inc.            Topic: N15AT002

    An integrated program of fundamental research, software development and technology transition to Navy target platforms for computationally efficient yet accurate prediction of turbulence interactions involving disparate length scales has been proposed and is underway. The fundamental research will be conducted at Purdue University and provide a critical modeling component for turbulence resolving ...

    STTR Phase II 2017 Department of DefenseNavy
  7. Reliable Manufacturing of Scandia-doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this Phase II STTR effort, nGimat will partner with the University of Kentucky (UK) and 3M/Ceradyne to continue development of W-scandate cathode composite materials. Compared to conventional M-type cathodes, these composite scandate nanomaterials will enable longer cathode lifetime by lowering the required operating temperature. nGimat is an established and successful powder manufacturing comp ...

    STTR Phase II 2017 Department of DefenseNavy
  8. Open Standard for Display Agnostic 3D Streaming (DA3DS)

    SBC: Third Dimension Technologies LLC            Topic: AF16AT07

    The Air Force has identified a need for a display agnostic common streaming model for 3D data. Third Dimension Technologies (TDT) and Oak Ridge National Laboratory (ORNL) have formed a consortium to define a 3D streaming model based on open standards for Display Agnostic 3D Streaming (DA3DS). Two factors are driving this need. The first is the dramatic increase in the collection, storage and trans ...

    STTR Phase II 2017 Department of DefenseAir Force
  9. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to signify the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes b ...

    STTR Phase II 2017 Department of DefenseNavy
  10. Measurement and Modeling of Surface Coking in Fuel-Film Cooled Liquid Rocket Engines

    SBC: CFD RESEARCH CORPORATION            Topic: AF15AT21

    Designing an efficient and effective film cooling system to protect critical components of modern rocket engines requires a significant number of problems and challenges to be addressed. Complicating the already difficult hydrodynamic challenges, thermal and/or catalytic cracking of hydrocarbon fuels is always accompanied with coke formation. Coke deposits on combustor and nozzle walls reduce heat ...

    STTR Phase II 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government