You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Innovative Multi-scale/Multi-physics based Tool for Predicting Fatigue Crack Initiation and Propagation in Aircraft Structural Components using Phase

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT003

    In this STTR effort, TDA and its team partner Northeastern University will focus on developing an innovative computational tool based on Phase Field Modeling approach for prediction of crack initiation and propagation under a variety of loading and environmental conditions. The proposed PFM computational framework accounts for both brittle and ductile fracture, including crack initiation and crack ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  4. Body-worn Wireless Physiological Monitoring Network

    SBC: Cognionics, Inc.            Topic: N13AT021

    This STTR Phase II proposal continues our work towards building a simple, high quality and unobtrusive mobile physiological sensor platform. The capabilities of the Phase I prototype will be expanded by adding sensors to further acquire SpO2 and respiration in addition to forming a body area network for data collection across multiple points on a subjects body. A software infrastructure will also ...

    STTR Phase II 2017 Department of DefenseNavy
  5. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Medium Voltage Direct Current (MVDC) Grounding System

    SBC: HEPBURN AND SONS LLC            Topic: N16AT012

    Hepburn and Sons LLC teamed with Florida State University (FSU) Center for Advanced Power Systems (CAPS) propose to develop an affordable, general method for grounding Medium Voltage Direct Current (MVDC) zonal electrical power systems for naval warships. The grounding system concept developed in Phase I will evaluate the incorporation of electric weapons and high power sensors while accounting fo ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Forensic Integrated Security Toolkit

    SBC: MISSION SECURE INC            Topic: N16AT013

    Cyber security forensic functions depend on highly structured conformance to log formats for generation and transmission capabilities including identity, network time stamps and event message formats. Without this structure there is no effective way to reconstruct the time sequencing patterns that reveal the presence of unauthorized actions and actors inside of a network. Limitations in the capaci ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N16AT004

    TDA has teamed up with Lawrence Livermore National Laboratory as its research institution collaborator to address the target STTR topic objective of quantifying the uncertainties in the mechanical behavior of the AM parts. To quantify uncertainties by minimizing both the computational burden and expensive testing and also overcoming the IP concerns, we propose a novel approach with three layered i ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: VEXTEC Corporation            Topic: N16AT004

    The Phase I objective is a proof of concept capability integrating process information, material properties and damage tolerance simulations into the Additive Manufacturing (AM) design certification process. VEXTEC has a toolbox of software and methods that consists of various software modules in multiple formats that are used to assess the durability of parts processed by traditional methods of c ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government