You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Advanced Printed Circuit Board Design Methods for Compact Optical Transceiver

    SBC: ATTOLLO ENGINEERING, LLC            Topic: A15AT001

    As the warfighter is increasingly using more highly integrated instruments, e.g. a laser rangefinder (LRF) combined with a laser designator and an imager, the need to decrease the size of these components becomes more important. Compact small munition applications of rangefinders particularly place an emphasis on size of the optical front end. In order to make the transceiver more compact, speci ...

    STTR Phase I 2015 Department of DefenseArmy
  4. Advanced Wavelength Tuners for Chem-Bio Detection Lasers

    SBC: LFK Technology Corp.            Topic: A11aT024

    Several laser types are in development by the government for advanced proximal sensors, including the quantum cascade laser, the miniature solid state laser with optical parametric oscillator and the miniature CO2 gas laser. The enabling critical component for all these advanced transmitters is the compact, robust, rapid, precision wavelength selector. It is proposed to develop and deliver a sta ...

    STTR Phase II 2014 Department of DefenseArmy
  5. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  6. Compressive Sensing Flash IR 3D Imager

    SBC: Physical Sciences Inc.            Topic: A15AT007

    Physical Sciences Inc. in cooperation with Colorado State University proposes to develop a compact infrared flash 3D imaging sensor employing compressive sensing (CS) concepts. The CS 3D sensor offers a combination of high range resolution (cm), high point cloud density (100100 format), and fast 3D image frame rates (30 Hz) in a low cost, compact form factor employing commercial off the shelf comp ...

    STTR Phase I 2015 Department of DefenseArmy
  7. Compressive Sensing Flash IR 3D Imager

    SBC: Physical Sciences Inc.            Topic: A15AT007

    Physical Sciences Inc. in collaboration with Colorado State University proposes to develop a compact infrared flash 3D imaging sensor employing compressive sensing (CS) approaches. The CS 3D sensor offers a combination of high range resolution (10 cm), high point cloud density (6464 format), and fast 3D image frame rates (10 Hz) in a low cost, compact form factor employing commercial off the shelf ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Compressive Spectral Video in the LWIR

    SBC: Physical Sciences Inc.            Topic: A13AT015

    Physical Sciences Inc. and Colorado State University will develop an innovative sensor that enables low-cost infrared hyperspectral imaging though the use of novel sampling algorithms which provide real-world chemical plume detection capability with compressed data and a hardware configuration which enables high frame rate capture of full 2D spatial and 1D spectral data. Compressive sensing techn ...

    STTR Phase I 2014 Department of DefenseArmy
  9. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  10. Conformal Passivation of High Aspect Ratio HgCdTe Surfaces by ALD Using a Novel Cd-Precursor

    SBC: Radiation Monitoring Devices, Inc.            Topic: A13AT013

    "HgCdTe is the material of choice for high performance infrared red focal plane arrays (IRFPA) used in militarys night vision systems. One of the major problems IRFPA manufacturers face is the ineffective passivation of the highly reticulated HgCdTe detector surfaces, which results in poor performance. Furthermore, newly evolved FPA technology requires the creation of much challenging high-aspect ...

    STTR Phase II 2015 Department of DefenseArmy
US Flag An Official Website of the United States Government