You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Epitaxial GaN on flexible metal tapes for low-cost transistor devices

    SBC: IBEAM MATERIALS, INC.            Topic: 1

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2014 Department of EnergyARPA-E
  2. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: DEFOA0000941

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase II 2014 Department of EnergyARPA-E
  3. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
  4. Epitaxial GaN on Flexible Metal Tapes for Low-Cost Transistor Devices

    SBC: IBEAM MATERIALS, INC.            Topic: DEFOA0000941

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2016 Department of EnergyARPA-E
  5. Enabling Technology- Reducing Greenhouse Gas Emissions and Energy Demands in the Meat Production Industry via Scaling Advanced 3D Culture Bioreactors

    SBC: Cambridge Crops, Inc.            Topic: G

    Food production, and in particular animal-derived meat products, are a major source of green-house gases, compounded by the remarkable inefficiency in biomass conversion (grain to dense muscle tissue in meat), along with growing challenges with food safety, quality and nutrition. To address this growing problem, we propose to exploit the emerging field of cellular agriculture (tissue engineering o ...

    STTR Phase II 2020 Department of EnergyARPA-E
  6. Flexible Low Temperature CO2 Capture System, E-CACHYS

    SBC: ENVERGEX LLC            Topic: 1

    This project focuses on the design, integration and optimization of a flexible natural gas combined cycle plant with carbon capture, capable of operating in a highly variable renewable energy environment. Renewable energy sources such as wind and solar power offer unique solutions in our quest to reduce global carbon dioxide (CO2) emissions. However, the increasing penetration of these high variab ...

    STTR Phase II 2020 Department of EnergyARPA-E
  7. High Energy Resolution Mixed-Halide Elpasolite Scintillators for Next Generation RIID

    SBC: CAPESYM INC            Topic: DTRA18B003

    The ability to discriminate between threatening and benign sources depends on the sensitivity, accuracy, and identification speed of the detection equipment. High energy resolution of the radionuclide sensor is necessary to decrease the likelihood of false identification. However, few scintillators achieve better than 3% energy resolution at 662 keV, and none exceed 2.5%. The goal of this effort i ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  8. Discrete 3-D Electronics for Mobile Radiation Detection Systems

    SBC: RADIATION DETECTION TECHNOLOGIES, INC.            Topic: DTRA18B002

    Phase II will utilize knowledge gained from phase I work to develop and execute a manufacturing process suitable for producing quantities of 3-D printed discrete circuits for radiation detection systems.  The goal is to support mobile radiation detection system requirements for high voltage, analog amplification, and MCA functionality to produce differential pulse height spectra in time sequence. ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  9. Mixed Elpasolite Scintillators

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: DTRA18B003

    The goal of this program is to develop the mixed elpasolite scintillators in order to achieve an energy resolution of  (≤ 2.5% (approaching 2%) at 662 keV for crystal sizes of up to 2 inch by 2 inch.  In this project we will investigate compositional changes in selected mixed-elpasolite(s) in order to achieve very high energy resolution.  By incorporating 6Li, neutron detection will also be t ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  10. Marburg Virus Prophylactic Medical Countermeasure

    SBC: Flow Pharma, Inc.            Topic: CBD18A002

    Through this STTR contract, we propose to evaluate the efficacy of our vaccine, FlowVax Marburg, in nonhuman primates (NHPs). This will be achieved through four Tasks. In Task 1, we will manufacture the vaccine in a quantity sufficient for the animal studies. In Task 2, we will perform MHC genotyping on a representative population of NHPs and, based on results, select a set of MHC-matched NHPs for ...

    STTR Phase II 2020 Department of DefenseOffice for Chemical and Biological Defense
US Flag An Official Website of the United States Government