You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
-
Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions
SBC: MAKEL ENGINEERING INC Topic: DTRA16A001This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium
SBC: Adranos Energetics LLC Topic: DTRA16A002While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Innovative Mitigation of Radiation Effects in Advanced Technology Nodes
SBC: RELIABLE MICROSYSTEMS LLC Topic: DTRA16A003Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Large area, high efficiency, extremely light-weight portable neutron Detector
SBC: TRITON SYSTEMS, INC. Topic: DTRA14B005A drop-in 3He-tube replacement technology for thermal neutron detection does not exist today. It is critical for homeland security and nuclear safeguards applications. In this program, Triton Systems proposes to develop a light-weight, large-area, high efficiency portable neutron detector for passive interrogation using an innovative gas detector structure. The resulting 3He-free thermal neutron d ...
STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency -
Microscale Detector Materials for Covert, Ubiquitous Radiation Detector
SBC: Radiation Monitoring Devices, Inc. Topic: DTRA14B004The proliferation of nuclear and radiological weapons of mass destruction is a serious threat in the world today. The goal of this proposal is to develop a new, very low cost radiation detection technology that will be useful for detection and for surveillance of individuals who have been near radioactive materials. The technology can also be used for dosimetry, and will provide the technology for ...
STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency -
Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications
SBC: Scientific Applications & Research Associates, Inc. Topic: DTRA16A004For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...
STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency -
Portable System with Li Foil MWPC Neutron Detectors
SBC: RADIATION DETECTION TECHNOLOGIES INC Topic: DTRA14B005At the completion of the research and development effort a Li foil multi-wire proportional counter (MWPC) neutron detector with more than 625 cm^2 of active area will be included in a portable radiation detection system. The system is expected to have an intrinsic thermal neutron detection efficiency of 55% or greater and gamma-ray rejection ratio (GRR) of 1.0x10^-8 or better. A gamma-ray spectrom ...
STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency -
Production of Inactivated Virus Vaccines Using Supralethal Irradiation
SBC: BIOLOGICAL MIMETICS INC Topic: DTRA14B002We seek a proof-of-concept study for the development of a new platform technology for the rapid and complete inactivation of pathogen infectivity for vaccine development of medically important micro-organisms (e.g. viruses, bacteria and parasites). A recently discovered reconstituted Mn+2-decapeptide phosphate complex (Mn-Dp-Pi) of the radiation-resistant bacterium Deinococcus radiodurans was foun ...
STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency -
Retrofittable and Transparent Super-Insulator for Single-Pane Windows
SBC: NANOSD, INC. Topic: DEFOA0001429NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...
STTR Phase II 2016 Department of EnergyARPA-E -
Vertical GaN Substrates
SBC: Sixpoint Materials, Inc. Topic: N/ASixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...
STTR Phase I 2014 Department of EnergyARPA-E