You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Free-Flying Unmanned Robotic Spacecraft for Asteroid Resource Prospecting and Characterization

    SBC: Honeybee Robotics, Ltd.            Topic: T402

    In Phase 2 we will develop a fully integrated, autonomous free-flying robotic system based on a commercial SkyJib quadcopter, and demonstrate flying straight and level to a target location, acquisition of rock and regolith samples, and return to the point of origin. The work plan for Phase 2 is as follows: 1. Completion of the Guidance, Navigation, Control, Vision, and Sample Acquisition subsyste ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  2. Compact Sensor for Isotope and Trace Gas Analysis

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: T801

    We propose to develop and demonstrate a new sensor platform for isotope and trace-gas analysis that is appropriate for future planetary missions. Among other applications, the technology can enable the collection of isotope ratio data in support of the search for evidence of life within the solar system. Current limitations to in-situ isotope measurements will be overcome by utilizing a capillar ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  3. ACE Booster

    SBC: GLOYER-TAYLOR LABORATORIES INC            Topic: T102

    GTL has been developing a suite of transformational technologies that have the capability to disrupt the traditional launch vehicle paradigm. BHL composite cryotank technology provides a four times improvement over large aluminum iso-grid tanks, offering a 6 percentage point improvement in small stage PMF. Superior Stability Engine is an innovative liquid rocket engine configured to maximize comb ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  4. Integrated Monitoring AWAReness Environment (IM-AWARE)

    SBC: AMERICAN GNC CORPORATION            Topic: T1301

    American GNC Corporation (AGNC) and Louisiana Tech University (LaTECH) are proposing a significant breakthrough technology, the Integrated Monitoring AWAReness Environment (IM-AWARE) consisting of an Enterprise Infrastructure with closely coupled smart sensor networks and Enhanced IT Security to enable: (i) real time monitoring of the distribution systems health; (ii) supporting maintenance operat ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  5. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development

    SBC: CFD RESEARCH CORPORATION            Topic: T1204

    Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material property prediction that contribute to slow and costly process development, process qualification and product certification. To address these gaps, CFDRC and our partner Dr. Kevin Chou, University of Alabama, will develop multiple computatio ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  6. Multifunctional Environmental Digital Scanning Electron Microprobe (MEDSEM)

    SBC: CHROMOLOGIC LLC            Topic: T801

    Chromologic (CL) and the California Institute of Technology (Caltech) propose to continue the Phase II STTR development and demonstration of a Multifunctional Environmental Digital Scanning Electron Microprobe (MEDSEM) instrument that transmits high energy beams of electrons sequentially using a two-dimensional array of multiple, miniaturized electron probes into a planetary atmosphere and strike ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  7. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments

    SBC: ATA ENGINEERING, INC.            Topic: T1201

    ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response predictions for aerospace structures under critical inhomogeneous aeroacoustic loads. This will allow more accurate predictions of structural responses to be made, potentially reducing vehicle weight and cost and improving the reliability ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  8. An End-To-End Microfluidic Platform for Engineering Life Supporting Microbes in Space Exploration Missions

    SBC: HJ SCIENCE & TECHNOLOGY INC            Topic: T601

    HJ Science & Technology (HJS&T) and Lawrence Berkeley National Laboratory (LBNL) propose a highly integrated, programmable, and miniaturized microfluidic automation platform capable of running rapid and complex synthetic biology and bioengineering processes for engineering life supporting microbes in space exploration missions. Our approach combines the microfluidic automation technology of HJS&T ...

    STTR Phase II 2015 National Aeronautics and Space Administration
  9. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space

    SBC: Honeybee Robotics, Ltd.            Topic: T402

    The World is Not Enough (WINE) is a new generation of CubeSats that take advantage of ISRU to explore space. The WINE takes advantage of existing CubeSat technology and combines it with 3D printing technology and an In Situ Resource utilization (ISRU) water extraction system. 3D printing enables development of steam thrusters (higher Isp than cold gas) as well as tanks that fit within the availabl ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  10. Advanced Gas Sensing Technology for Space Suits

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: T601

    The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on infrared absorption are candidate replacements, because of their proven long-term stability, despite their size and power consumption and failures in the presence of liquid water. No current compact sensor has the tolerance for liquid water ...

    STTR Phase II 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government