You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Active Control of a Scramjet Engine

    SBC: Ahmic Aerospace LLC            Topic: AF15AT19

    ABSTRACT: Scramjet engines are expected to operate across wide Mach number ranges and typically incorporate isolators to provide sufficient back-pressure margin and prevent unstart. Unfortunately, isolators introduce additional weight and drag, and form multiple shockwave/boundary layer interactions, which degrade the incoming flow. As military requirements become increasingly demanding, an active ...

    STTR Phase I 2015 Department of DefenseAir Force
  2. Active Control of a Scramjet Engine

    SBC: Innoveering, LLC            Topic: AF15AT19

    In this effort, Innoveering will integrate and test a closed-loop active control system for scramjet isolator shock system positioning. The approach is to control the fuel flow to the engine to position the shock train leading edge at a specified location in the isolator. The control system includes three basic elements: a shock position sensing system based, a fast response fuel valve that adjust ...

    STTR Phase II 2016 Department of DefenseAir Force
  3. Active Control of a Scramjet Engine

    SBC: Ahmic Aerospace LLC            Topic: AF15AT19

    Scramjet engines are designed to operate across a wide Mach number range and typically incorporate isolator sections to provide sufficient back-pressure margin and prevent unstart. As military requirements become increasingly demanding, an active, closed-loop control system is necessary to maintain engine stability and power output. During Phase I, key components of a scramjet control system were ...

    STTR Phase II 2016 Department of DefenseAir Force
  4. Active Control of Scramjet Isolator Shocks (ACSIS)

    SBC: Innoveering, LLC            Topic: AF15AT19

    ABSTRACT: Active control of the shock system in a scramjet engine isolator opens possibilities for enhanced engine performance and reduced engine weight by eliminating excess isolator design margin. A successful system will allow for maximum performance from a given engine configuration and will deliver range and efficiency that exceeds those possible using passive unstart control. Our approach is ...

    STTR Phase I 2015 Department of DefenseAir Force
  5. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Cyber Superiority for Air Force Combatant Commanders Using Cyber-domain

    SBC: Andro Computational Solutions LLC            Topic: AF08BT06

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies in the AC4S architecture is the Cyber Superior ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Dynamic Cross-layer Routing Using Cognitive Spectrum Allocation (AXL-RO

    SBC: Andro Computational Solutions LLC            Topic: AF10BT09

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies that forms the basis of AC4S is the AXL-ROSA s ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. A Multiscale Simulation Framework to Model Energetic Materials Subjected to Shock Loading

    SBC: SIMMETRIX, INC.            Topic: AF15AT28

    ABSTRACT: The overall objective of this project is to develop scalable simulation components that effectively model the meso-scale physics of heterogeneous energetic materials subject to dynamic shock loading including matrix debonding, void collapse, and damage due to crystal to crystal interactions, and bridges the meso-scale to the macro-scale for system scale simulations of the transition to d ...

    STTR Phase I 2015 Department of DefenseAir Force
  8. Aptamer-based Nanofunctionalized OFET Biosensor

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: AF14AT11

    ABSTRACT: Physiological and environmental monitoring and telemedicine are becoming important tools. Biomarkers play an important role in diagnosing health conditions and enabling advanced care and monitoring systems implemented through telemedicine. Telemedicine tools are needed to seamlessly interface and communicate the physiological condition of the human body with modern electronics including ...

    STTR Phase I 2015 Department of DefenseAir Force
  9. Aptamer-based Nanofunctionalized OFET Biosensors

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: AF14AT11

    ABSTRACT: Researchers are identifying new biomarkers to help monitor, diagnose, and treat growing threats to the human body and enhance human performance. Recent sensor work combining biorecognition elements with field effect transistors (bio-FETs) has been shown sensitive and selective to biomarkers in the picomolar range with continuous detection; however device-to-device performance variability ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. A Range Segment Upgrade for Air Force Satellite Control Network with Smart Antennas and Cognitive Satellite Radios

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF14AT16

    ABSTRACT: A range segment upgrade for Air Force satellite control network (AFSCN) will significantly improve system effectiveness via spectrum sharing and seamless interoperation. However, the upgraded system requires new capabilities such as real-time and accurate RF interference detection and mitigation, array antenna backlobe/sidelobe suppressions, accurate performance degradation prediction, ...

    STTR Phase I 2015 Department of DefenseAir Force
US Flag An Official Website of the United States Government