You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Active Control for Combustor Performance Optimization

    SBC: EERGC CORP.            Topic: N/A

    Current research initiataives, including DoD IHPTET and HyTech, DOE ATS, and commercial development, are agressively pursuing significant improvements in combustor performance Optimization typically results in operating regimes for which combustionstability is difficult to maintain. This proposed program continues the novel combustion control and optimization concepts with flexible dual-use appl ...

    STTR Phase I 2001 Department of DefenseAir Force
  2. Active Control for Combustor Performance Optimization

    SBC: EERGC CORP.            Topic: N/A

    Current research initiataives, including DoD IHPTET and HyTech, DOE ATS, and commercial development, are agressively pursuing significant improvements in combustor performance Optimization typically results in operating regimes for which combustionstability is difficult to maintain. This proposed program continues the novel combustion control and optimization concepts with flexible dual-use appl ...

    STTR Phase II 2001 Department of DefenseAir Force
  3. Active Control of a Scramjet Engine

    SBC: Innoveering, LLC            Topic: AF15AT19

    In this effort, Innoveering will integrate and test a closed-loop active control system for scramjet isolator shock system positioning. The approach is to control the fuel flow to the engine to position the shock train leading edge at a specified location in the isolator. The control system includes three basic elements: a shock position sensing system based, a fast response fuel valve that adjust ...

    STTR Phase II 2016 Department of DefenseAir Force
  4. Active Control of Scramjet Isolator Shocks (ACSIS)

    SBC: Innoveering, LLC            Topic: AF15AT19

    ABSTRACT: Active control of the shock system in a scramjet engine isolator opens possibilities for enhanced engine performance and reduced engine weight by eliminating excess isolator design margin. A successful system will allow for maximum performance from a given engine configuration and will deliver range and efficiency that exceeds those possible using passive unstart control. Our approach is ...

    STTR Phase I 2015 Department of DefenseAir Force
  5. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Cyber Superiority for Air Force Combatant Commanders Using Cyber-domain

    SBC: Andro Computational Solutions LLC            Topic: AF08BT06

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies in the AC4S architecture is the Cyber Superior ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S): Dynamic Cross-layer Routing Using Cognitive Spectrum Allocation (AXL-RO

    SBC: Andro Computational Solutions LLC            Topic: AF10BT09

    ABSTRACT: In this effort selected SBIR technologies will be matured and merged to establish the Adaptive Cyber-secure Cross-layer Communications-Classification System (AC4S) for enhancing the throughput, spectral efficiency, speed, reliability and security performance of software defined radio (SDR) communication networks. One of the core technologies that forms the basis of AC4S is the AXL-ROSA s ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. Advanced Hearing Protection

    SBC: DOMINCA LLC            Topic: N/A

    Some ground crews for aircrafts are exposed to ambient noise levels up to 150 dB SPL: at these levels, conduction of sound through tissues is significant and may be responsible for hearing loss. Protecting the ear canal with earplugs and earmuffs cannotprevent damage caused by tissue-conducted sound. Our research partners at University of Illinois at Urbana-Champaign, experts in bioacoustics and ...

    STTR Phase I 2001 Department of DefenseAir Force
  8. AlInGaN-based Crested Quantum Tunneling Barriers for Advanced Data Storage Systems

    SBC: Sensor Electronic Technology, Inc.            Topic: N/A

    We propose a new way to reach a dramatic speed-up of floating gate memories by using quantum-mechanical tunneling through specially shaped (

    STTR Phase I 2001 Department of DefenseAir Force
  9. A Multiscale Simulation Framework to Model Energetic Materials Subjected to Shock Loading

    SBC: SIMMETRIX, INC.            Topic: AF15AT28

    ABSTRACT: The overall objective of this project is to develop scalable simulation components that effectively model the meso-scale physics of heterogeneous energetic materials subject to dynamic shock loading including matrix debonding, void collapse, and damage due to crystal to crystal interactions, and bridges the meso-scale to the macro-scale for system scale simulations of the transition to d ...

    STTR Phase I 2015 Department of DefenseAir Force
  10. A Range Segment Upgrade for Air Force Satellite Control Network with Smart Antennas and Cognitive Satellite Radios

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF14AT16

    ABSTRACT: A range segment upgrade for Air Force satellite control network (AFSCN) will significantly improve system effectiveness via spectrum sharing and seamless interoperation. However, the upgraded system requires new capabilities such as real-time and accurate RF interference detection and mitigation, array antenna backlobe/sidelobe suppressions, accurate performance degradation prediction, ...

    STTR Phase I 2015 Department of DefenseAir Force
US Flag An Official Website of the United States Government