You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
  2. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
  3. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    Systems that operate in constrained environments depend on the acoustics in several ways. Harbor defense systems detect intruders (people and/or vessels) by either listening for their noises (passively) or by pinging on them and detecting their echoes (actively). Furthermore, such systems may also form the equivalent of an underwater cell phone network using sound to carry the information. The aco ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Durable, Multifunctional, Thermal Barrier Coatings for Marine Gas Turbines

    SBC: RELIACOAT TECHNOLOGIES, LLC            Topic: N16AT019

    Due to high power density and durability, gas turbines provide significant benefits in terms of efficiency and performance that in recent years, marine gas turbines have been deployed in commercial and cruise ships. Marine gas turbine technologies are essentially extensions of aero-gas turbine technology. Aero, land and marine engines have been used successfully for decades, recently there have be ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Embedded Space Analytics

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: N16AT020

    Navy needs a real-time graph embedding tool for analyzing huge graphs (millions of nodes and billions of edges) from diverse sources. However, current approaches cannot provide dynamic and scalable graph analytics to show the military value of tactical data. In this project, InfoBeyond advocates EStreaming (Embedding & Streaming) for scalable and efficient graph streaming. EStreaming promotes big ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SENVOL LLC            Topic: N16AT022

    Additive manufacturing (AM) will reduce the delay times required in producing Naval parts that are no longer stocked. However, rapid qualification of parts is still a challenge when a limited number of components are required. To fully exploit the potential advantages of AM, a means of accurately addressing the reliability of AM components is required. By simulating the entire design-build-operati ...

    STTR Phase I 2016 Department of DefenseNavy
  7. SOCRATES Maritime Multi-access Optical Communication and System

    SBC: SA PHOTONICS, LLC            Topic: N16AT024

    SA Photonics is pleased to propose the SOCRATES free space optical communication and sensing system featuring the Photonic Optical Multicast Mast Unit (POMMU). SOCRATES enables 360 degree multicast capability of high bandwidth communication in addition threat search and track capability. SA Photonics will team with the Prof. Michal Lipson of the Lipson Nanophotonics Group at Columbia University wh ...

    STTR Phase I 2016 Department of DefenseNavy
  8. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  9. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: VEXTEC Corporation            Topic: N16AT004

    The Phase I objective is a proof of concept capability integrating process information, material properties and damage tolerance simulations into the Additive Manufacturing (AM) design certification process. VEXTEC has a toolbox of software and methods that consists of various software modules in multiple formats that are used to assess the durability of parts processed by traditional methods of c ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government