You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Microelectronics Component Adhesive Selection and Design Rules for Failure Avoidance

    SBC: CFD RESEARCH CORPORATION            Topic: MDA14T002

    Thermally induced fatigue and residual stress introduced during fabrication are sources of stress related failure in microelectronics, which raises concerns about product reliability and specification. CFDRC has teamed with experts in the reliability of microelectronics packaging to develop a testing and physics based modeling protocol to correlate material properties and thermal loading conditio ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  2. Base Metal Electrode Capacitor Test Methods

    SBC: FUNDO SCIENCE CORPORATION            Topic: MDA14T003

    Miniaturized base metal electrodes (BME) multilayer ceramic capacitors (MLCC) are of great interest for future missile applications as designers are striving to achieve smaller, lighter, cheaper, faster and better electronic assemblies without sacrificing long-term performance. Unfortunately, screening, reliability and qualifications criteria are either not available or not standardized. In the ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  3. Failure Avoidance in Microelectronics Due to Coefficient of Thermal Expansion (CTE) Mismatch of Substrates and Adhesives

    SBC: GLOBAL ENGINEERING RESEARCH AND TECHNOLOGIES, LLC            Topic: MDA14T002

    The reliability of electronic packages is of paramount concern in todays electronics industry, and ensuring their thermomechanical integrity is necessary to achieve this reliability. However, this task has become more challenging with miniaturization and the introduction of new materials. Thermal stresses in electronic packages continue to be one of the leading causes of device failure. The pro ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  4. Application Specific Integrated Circuit for Avionic Component Health Monitoring

    SBC: MANAGEMENT SCIENCES INC            Topic: MDA14T001

    Management Sciences is widely recognized for its passive instrumentation module that runs Bayesian algorithms which monitor signatures to assess the health and remaining life of electronic and mechanical components. New Mexico Institute of Mining and Technology (NM Tech) is our research partner. Our approach is to translate a current microelectronic module into an 1-in x 1-in application specif ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  5. Failure Avoidance in Microelectronics through Coefficient of Thermal Expansion (CTE) Mismatch Modeling and Design

    SBC: Space Micro Inc.            Topic: MDA14T002

    Space Micro will develop the core of the decision support system, assemble the models and material properties and demonstrate the utility of the program in materials selection on a subset of failures related to a specific test-bed, which will be the attachment of quad-flat no-leads (QFN) and ball grid array (BGA) devices to printed wiring boards using different solders, underfills, QFN or BGA geom ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  6. Micro-Particle Debris Characterization from Hyper-Velocity Impacts

    SBC: Torch Technologies, Inc.            Topic: MDA13T002

    Leveraging the results of our Phase I work, the Torch Team proposes to execute laboratory-based experiments to elucidate fundamental micro-debris formation mechanisms to improve optical modeling of impacts. Optical signatures from impacts collected over the last decade have identified definitive micro-debris parameter trends. However, current theories have difficulty reproducing these optical ob ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  7. Improved Flotation Separation of Rare Earth Ore

    SBC: ATS-MER, LLC            Topic: OSD12T01

    A critical step in the extraction of elements from ore, especially rare earth elements that are found in complex minerals, is separation. Froth flotation is a highly versatile method for physically separating particles based on differences in the ability of air bubbles to selectively adhere to specific mineral surfaces in a mineral/water slurry. The particles with attached air bubbles are then ca ...

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  8. Information Salience

    SBC: DISCERNING TECHNOLOGIES, LLC            Topic: OSD11TD1

    Empirical-based mathematical framework and computer algorithms, for representing human perception and cognition processes and limitations, which influence the recognition of salient information about rapidly changing events.

    STTR Phase II 2015 Department of DefenseOffice of the Secretary of Defense
  9. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  10. Dual Band Long-Wave Infrared p-type InAs/(In)GaSb Superlattice Focal Plane Arrays

    SBC: SK Infrared LLC            Topic: MDA10012

    The objective of the overall STTR program is to develop a high performance mid-format dual band long wave infrared (IR) focal plane array (FPA) using p-type InAs/(In)GaSb strained layer superlattices (SLS). The project consists of three primary research thrusts including (1) improvement of quantum efficiency, (2) optimized sidewall passivation, and (3) focal plane array fabrication and testing. ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government