You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. NLV Upper Stage Development and Flight Testing

    SBC: Garvey Spacecraft Corporation            Topic: T101

    Our Phase I results include a preliminary design for an advanced nanosat launch vehicle (NLV) upper stage that features several advanced propulsion technologies, as well as extensive empirical data from a series of pathfinding operations conducted at both the Pacific Spaceport Complex - Alaska on Kodiak Island and the Poker Flat Research Range. For Phase II, we are taking major steps, such as bui ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  2. Bantam Rocket Affordable SLV Stage (BRASS)

    SBC: EXQUADRUM INC            Topic: T101

    During the proposed Phase I research and development effort, the project team will integrate previously demonstrated technologies into a stage 4 propulsion system for an existing Small Launch Vehicle (SLV). The resulting fourth stage will meet launch vehicle requirements for Mass Fraction and Specific Impulse. Key stage component will be fabricated and demonstrated. The propulsion system will be ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  3. A Massively Parallel Framework for Low-Dissipation, Multiphysics Simulations of Rocket Engines

    SBC: CASCADE TECHNOLOGIES INC            Topic: T102

    In this proposal, researchers from Cascade Technologies and Stanford University outline a multi-year research plan to develop large-eddy simulation (LES) tools to predict and understand combustion instabilities in liquid-propellant rocket engines. Rocket instabilities are a notoriously complicated, multiscale problem involving nonlinear interactions between transcritical multiphase flows, turbulen ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  4. Multiphysics Framework for Prediction of Dynamic Instability in Liquid Rocket Engines

    SBC: ATA ENGINEERING, INC.            Topic: T102

    Mitigation of dynamic combustion instability is one of the most difficult engineering challenges facing NASA and industry in the development of new continuous-flow combustion systems such as the combustion chambers in liquid-fueled rocket engines (LREs). Combustion instabilities are spontaneous, self-sustaining oscillations that tie the combustor acoustics to the combustion reaction itself. These ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  5. Launch Weather Decision Support System

    SBC: Radiometrics Corporation            Topic: T103

    Launch safety and efficiency requires timely and accurate wind, thermodynamic and pressure information from the surface to 20 km height, and lightning risk identification. A Doppler radar now provides wind measurements that satisfy this requirement at the Eastern Test Range. Thermodynamic soundings are provided by intermittent radiosondes on launch day. Typical intervals of an hour or more between ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  6. Optical Intersatellite Communications for CubeSat Swarms

    SBC: CROSS TRAC ENGINEERING, INC.            Topic: T1102

    The growing interest in CubeSat swarm and constellation systems by NASA, the Department of Defense and commercial ventures has created a need for self-managed inter-satellite networks capable of handling large amount of data while simultaneously precisely measuring the distances between the spacecraft. CrossTrac Engineering, Inc., in cooperation with our partners Professor Kerri Cahoy of the Massa ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  7. Efficient On-board Lamberts Solution for DSM

    SBC: ADVANCED SPACE LLC            Topic: T1102

    Distributed Spacecraft Missions (DSMs) such as constellations, formation-flying missions, and fractionated missions provide unique scientific and programmatic benefits. Distributed mission architectures allow for multipoint in-situ measurements, multi-angle viewpoints, and considerably improved understanding of the connections between separately measured phenomena and their time variations. DSMs a ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  8. Composite Repair System

    SBC: GLOYER-TAYLOR LABORATORIES INC            Topic: T1202

    GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the repair of damaged induced in thin-laminate composite cryotanks. In applying CRS to damaged composite structures, the required level of structural capacity is recovered to within a predetermined percentage of its original performance after ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  9. Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System

    SBC: AMERICAN GNC CORPORATION            Topic: T1301

    NASA's strategic needs include those related to flexible instrumentation capable of monitoring remote or inaccessible measurement locations within Stennis Space Center (SSC) testing facilities. Looking to support the advancement of NASA SSC's infrastructure, American GNC Corporation (AGNC) and the Rensselaer Polytechnic Institute (RPI) are proposing the Through Wall Wireless Intelligent Sensor and ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  10. Methodology for Distributed Electric Propulsion Aircraft Control Development with Simulation and Flight Demonstration

    SBC: EMPIRICAL SYSTEMS AEROSPACE INC            Topic: T1501

    In the proposed STTR study, Empirical Systems Aerospace, Inc. (ESAero) and the University of Illinois at Urbana-Champaign (UIUC) will create a methodology for the development of a flight control algorithm featuring differential thrust provided by a distributed electric propulsion (DEP) system. The focal piece of the study is a dynamically scaled Cirrus SR22T UAV at UIUC, which will be modified to ...

    STTR Phase I 2017 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government