You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Stable High Bandwidth AO Control with physical DM constraints

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT008

    Adaptive optics (AO) can compensate for the aberrating effects of atmospheric turbulence which degrade the performance of high energy laser (HEL) weapon systems and, as such, is an enabling technology for effective deployment of HEL weapon systems. A key component in an HEL AO system is the deformable mirror (DM). However, mechanical constraints in currently available DMs limits AO system performa ...

    STTR Phase II 2020 Department of DefenseAir Force
  2. Urbanscape: Single Shot Multi-Task 3D Reconstruction

    SBC: DZYNE TECHNOLOGIES, LLC            Topic: DTRA18B001

    Hazard assessment tools that model the transport and dispersion of Chemical, Biological, Radiological, Nuclear and Explosive (CBRNE) materials through urban areas are only as good as the 3D models that inform the physics model. Maintaining accurate, up-to-date 3D models of urban areas is challenging. Even in the commercial world, urban construction and demolition may result in the models created a ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  3. PathEngine II: A Platform To Automate the Integration of Data To Predict Pathogenic Potential

    SBC: NETRIAS, LLC            Topic: ST18C002

    Netrias, the Texas A&M Health Science Center (TAMHSC) and the Texas A&M Engineering Experiment Station (TEES), and expert consultants will expand and extend the capabilities of PathEngine, an advanced computational platform that ingests and integrates a corpus of bacterial phenotype measurements suitable for the training of a pathogenicity machine learning algorithm. We will enhance the data integ ...

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  4. Methane Harvesting for Seafloor Generation

    SBC: MARITIME APPLIED PHYSICS CORPORATION            Topic: ST18C005

    Clearly demonstrate that a sub-sea methane harvesting power station can be developed, deployed, and operated to produce power at the 1kW level. Show that no major hurdles remain to produce a fully functional prototype system. Such a system will harvest methane from a productive methane ocean seep and operate autonomously for several years.

    STTR Phase II 2020 Department of DefenseDefense Advanced Research Projects Agency
  5. Detection Rate Improvements Through Understanding and Modeling Ocean Variability--- Phase II-- MP-18-103

    SBC: METRON INCORPORATED            Topic: N18AT002

    Transmission loss (TL) is a key input to the sonar equation for predicting the ability of an active sonar system to detect and track a target of interest. The proposed technical effort centers on developing physics-based models to interpret and predict TL variability. The concept under development consists of a model that consumes modeled and in situ oceanographic information, estimates the likeli ...

    STTR Phase II 2020 Department of DefenseNavy
  6. Rapid Identification of Effects of Defects within Metal Additive Manufacturing (RIED-AM)

    SBC: Intelligent Automation, Inc.            Topic: N18AT013

    Additive manufacturing (AM) bring revolutionary capabilities and is very attractive to various commercial and military applications. However, metal AM often results in components with various defects, which may have decisive impact on their mechanical properties. To address this critical concern of AM quality, in this research, Intelligent Automation, Inc (IAI) will develop and implement a materia ...

    STTR Phase II 2020 Department of DefenseNavy
  7. Nondestructive Evaluator for Polymer Ablatives (NEPAL)

    SBC: Intelligent Automation, Inc.            Topic: N18AT011

    Materials for thermal protection are required to protect structural components of missile launching systems, space vehicles during the re-entry stage, and solid rocket motors (SRMs). Polymer resins that have high char retention (e.g., phenolic resins) are the most common matrices in the composite materials for rigid thermal protection systems (TPSs) due to their tunable density, lower cost, and hi ...

    STTR Phase II 2020 Department of DefenseNavy
  8. Multi-Modal Sensing of Sensitization and Stress Corrosion Cracking Susceptibility in AA5xxx Alloys

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N18AT010

    In order to travel faster, travel longer, and carry larger payloads, new Navy ships are being designed with light weight alloys and composite materials. High magnesium AA5xxx series alloys provide a high strength to weight ratio and excellent corrosion resistance, but suffer from sensitization as anodic ß precipitates (Al¬3Mg2) are form along grain boundaries due to a combination of elevated tem ...

    STTR Phase II 2020 Department of DefenseNavy
  9. Laser Surface Modification and Galvanic Protection of 5XXX

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N18AT016

    Exfoliation corrosion of 5XXX series aluminum alloy is an issue related to sensitization of the aluminum substrate wherein internal stresses drive delamination of highly elongated outer layers due to preferential corrosion paths and volumetric expansion. The Navy is interested in preventing this corrosion to decrease lifetime costs on Littoral Combat Ships, Ship-to-Shore Connector vessels, and Tic ...

    STTR Phase II 2020 Department of DefenseNavy
  10. Systematic Fatigue Test Spectrum Editing Using Wavelet Transformations

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N18BT029

    Our Phase I effort showed that spectrum compression could be successfully achieved via Wavelet Transform (WT) based Fatigue Spectrum Editing (FSE) techniques for uniaxial HCF spectra cases. For example, 85% reduction in spectrum length can be achieved in the case of the original FELIX spectrum. However, the extension of the same FSE technique to multi-axial HCF cases showed less desirable results ...

    STTR Phase II 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government