You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Wireless Networked Cryogenic and Minimum Pressure Sensors

    SBC: Nanosonic Inc.            Topic: T13

    During the NASA program, we will transition the semiconductor nanomembrane self-calibrating cryogenic and minimum pressure sensors from their current concept and prototype TRL 4-5 demonstration stage, to near-term instrumentation products of use to NASArsquo;s propulsion system facilities, other NASA instrumentation programs, academic researchers and industrial technologists. NanoSonic will again ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  2. MarsOasis- An Efficient Autonomously Controlled Martian Crop Production System

    SBC: Space Lab Technologies, LLC            Topic: T7

    The MarsOasistrade; cultivation system is a versatile, autonomous, environmentally controlled growth chamber for food provision on the Martian surface.nbsp; MarsOasistrade; integrates a wealth of prior research and Mars growth chamber concepts into a complete system design and operational prototype.nbsp; MarsOasistrade; includes several innovative features relative to the state of the art space gr ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  3. Smallsat Swarm Sparse Aperture SAR for Recon and Surveillance (SSSASAfRaS)

    SBC: VisSidus Technologies, Inc.            Topic: T4

    The goal of Phase II work is to further advance the TRL of the swarm coordination and control algorithms from the current estimated TRL 3 to a TRL 4-5. The technical objectives proposed for Phase II are divided into two broad categories that support the goal. One category includes continuation and refinement of the work performed in Phase I and the other category includes new work, some of which h ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  4. Multi-Function Fluid Measurement System using High-Definition Fiber Optic Sensing

    SBC: Luna Innovations Incorporated            Topic: T13

    Propulsion systems require rigorous and highly instrumented testing to enable a comprehensive analysis of performance and to minimize risks associated with space flight. Current testing instrumentation methods can be replaced with embedded sensor systems that are used for monitoring remote, hazardous, or inaccessible locations, while reducing cabling and power consumption. The additional informati ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  5. Validated Engineering Tools for Thin-Ply Composites

    SBC: Opterus Research and Development, Inc.            Topic: T12

    Opterus Research and Development, Inc. proposes to develop and validate multi-scale thin-ply High Strain Composites (HSCs) constitutive modeling tools for incorporation into commercial finite element analysis codes. The constitutive models will capture the time-temperature-load-deformation viscoelastic characteristics common to HSCs as well as the yielding or permanent deformation associated with ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  6. Integrated Sensors for the Evaluation of Structural Integrity of Inflatable Habitats

    SBC: Nanosonic Inc.            Topic: T12

    The objective of the proposed NASA Sequential Phase II STTR program is to continue the development of mechanically flexible piezoresistive sensors for the measurement of long-term creep strain in inflatable habitat webbing.nbsp; During the Phase I and base Phase II programs, NanoSonic has worked with the Electronic Textiles Laboratory at Virginia Tech to demonstrate the technical feasibility of fa ...

    STTR Phase II 2020 National Aeronautics and Space Administration
  7. Point of care blood coagulopathy diagnostics

    SBC: Coalesenz Inc.            Topic: DHA19A001

    We have developed a novel low-cost, multi-functional blood coagulation sensor that can measure a patient’s coagulation status within less than 10 minutes using a 25mL drop of blood. This device addresses the critical unmet need to identify and manage patients with an elevated risk of life-threatening bleeding or thrombosis, the major causes of in-hospital preventable death. In addition, our inno ...

    STTR Phase II 2020 Department of DefenseDefense Health Agency
  8. High Energy Resolution Mixed-Halide Elpasolite Scintillators for Next Generation RIID

    SBC: CapeSym, Inc            Topic: DTRA18B003

    The ability to discriminate between threatening and benign sources depends on the sensitivity, accuracy, and identification speed of the detection equipment. High energy resolution of the radionuclide sensor is necessary to decrease the likelihood of false identification. However, few scintillators achieve better than 3% energy resolution at 662 keV, and none exceed 2.5%. The goal of this effort i ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  9. Mixed Elpasolite Scintillators

    SBC: Radiation Monitoring Devices, Inc.            Topic: DTRA18B003

    The goal of this program is to develop the mixed elpasolite scintillators in order to achieve an energy resolution of  (≤ 2.5% (approaching 2%) at 662 keV for crystal sizes of up to 2 inch by 2 inch.  In this project we will investigate compositional changes in selected mixed-elpasolite(s) in order to achieve very high energy resolution.  By incorporating 6Li, neutron detection will also be t ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  10. Urbanscape: Single Shot Multi-Task 3D Reconstruction

    SBC: Dzyne Technologies Incorporated            Topic: DTRA18B001

    Hazard assessment tools that model the transport and dispersion of Chemical, Biological, Radiological, Nuclear and Explosive (CBRNE) materials through urban areas are only as good as the 3D models that inform the physics model. Maintaining accurate, up-to-date 3D models of urban areas is challenging. Even in the commercial world, urban construction and demolition may result in the models created a ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government