You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Context-driven Active-sensing for Repair Tasks II (CART II)

    SBC: DYNAMIC OBJECT LANGUAGE LABS, INC.            Topic: ST14B003

    Existing machine perception systems are too inflexible, and are not robust enough to environmental uncertainty. In existing systems, perception components are statically (and manually) configured to process sensor data. The parameters of components in such a system are also statically tuned to operate optimally under very specific conditions. Information flow in such systems is bottom up, and gene ...

    STTR Phase II 2016 Department of DefenseDefense Advanced Research Projects Agency
  2. Table- top 3-D real time holographic nanoscope

    SBC: XUV LASERS INC            Topic: ST15C001

    We propose to develop a high-resolution soft x-ray nanoscope based on Fourier Transform Holography which has the very important advantage for real time visualization: 3D images are nearly instantaneously retrieved with a simple 2D Fast Fourier Transform operation. The table-top soft x-ray nanoscope will use for illumination a compact high average power soft x-ray laser that generates high e ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  3. Memristor-CMOS Analog Co-Processor for Efficient Computation of PDEs

    SBC: SPERO DEVICES, INC.            Topic: ST15C002

    Spero Devices is proposing design of a memristor-CMOS co-processor to implement analog Discrete Fourier Transforms (DFTs). The analog co-processor invokes spectral methods to solve a class of linear and non-linear partial differential equations (PDEs) arising in the scientific simulation of complex systems. Current PDE solution methods are inefficient and often intractable due to limitations assoc ...

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  4. Portable and Automated Radiation Effects Test Structures for Advanced Technology Nodes

    SBC: Microelectronics Research Development Corporation            Topic: DTRA16A003

    Micro-RDC will develop portable radiation effects test structures that scales to new process nodes. These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level. The production of the chosen structures and the development of software to extract the model parameters will form the framework. A suit ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  5. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Real time Tabletop X-ray Nanoscope based on High Harmonic Light Sources

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: ST15C001

    N/A

    STTR Phase I 2016 Department of DefenseDefense Advanced Research Projects Agency
  7. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: RELIABLE MICROSYSTEMS LLC            Topic: DTRA16A003

    Establish a radiation-aware analysis capability in a commercial EDA design flow that will enable first-pass success in radiation-hardened by design (RHBD) for DoD ASICs in much the same way that existing EDA design suites ensure first pass functionality and performance success of complex ASICs destined for commercial applications. Layout-aware, calibrated single-event radiation models that captur ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government