You are here

Award Data

For best search results, use the search terms first and then apply the filters

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Thermal Management System Toolkit for Naval Warfare Applications

    SBC: CU AEROSPACE L.L.C.            Topic: N152115

    CU Aerospace (CUA), teamed with the University of Illinois at Urbana-Champaign (UIUC), proposes to research, develop, and demonstrate thermal management simulation tools for next-generation two-phase cooling systems designed for transient high heat-flux naval applications. The software developed in this program can be used to evaluate advanced thermal management designs for critical emerging naval ...

    SBIR Phase I 2016 Department of DefenseNavy
  2. Affordable Manufacturing of Refractory Metal Components

    SBC: Metal Technology            Topic: N142125

    Research the use of laser powder bed fusion to provide a lower cost method to manufacture complex geometries in C103 and other refractory metals.

    SBIR Phase I 2016 Department of DefenseNavy
  3. Harvestable Energy System for Use in Covered Locations

    SBC: Microlink Devices, Inc.            Topic: N153124

    The objective of the proposed project is to develop a lightweight, robust, and modular system, capable of harvesting solar energy in areas with dense foliage cover in an effective manner. The system proposed will be able to reach a height of 100 feet above an average tropical forest canopy to deploy a solar array capable of generating 250 W under AM1.5G 1-sun illumination. In this proposal, MicroL ...

    SBIR Phase I 2016 Department of DefenseNavy
  4. III-Nitride Based Compact 320-355 nm UV Lasers

    SBC: NOUR, LLC            Topic: N161005

    Existing ultraviolet laser diodes with wavelengths much shorter than 355 nm suffer from poor performance. This is partially due to limited research in this area, but a large part is also due to material and processing issues unique to deep UV lasers. New approaches to achieving III-Nitride UV lasers at wavelengths shorter than 355nm are needed to meet the Navys ambitious goals of having 1 W of CW ...

    SBIR Phase I 2016 Department of DefenseNavy
  5. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: QUESTEK INNOVATIONS LLC            Topic: N16AT004

    Additive manufacturing (AM) promises to be an innovative technology that can enable rapid manufacturing of complicated parts and greatly reduced cycle time. However, the AM process is complex and involves a large number of processing steps, each with its own set of uncertainties. These uncertainties compound through the AM build process, resulting in parts with widely varying properties across dif ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Novel, High-Efficiency, Light-weight, Flexible Solar Cells as Electrical Power Generation Source

    SBC: Microlink Devices, Inc.            Topic: N16AT006

    MicroLink Devices proposes to integrate its novel, high-efficiency, lightweight, and flexible solar sheet technology to a small unmanned aircraft system (UAS) that will provide a significant source of power, enabling long endurance flights spanning one full day to several days of continuous operation. This will be a breakthrough technology that will enhance the performance and utility of the Navys ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Optimized High Performance Stainless Steel Powder for Selective Laser Melting Additive Manufacturing (AM)

    SBC: QUESTEK INNOVATIONS LLC            Topic: N16AT007

    Additive Manufacturing (AM) promises to be an innovative technology that can enable rapid manufacturing of complex parts at greatly reduced cycle time. With the maturation of selective laser melting (SLM) AM technologies there is increasing interest in applying this manufacturing method to the production of aircraft structural components, many of which are made of high-strength stainless steels. H ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Medium Voltage Direct Current (MVDC) Grounding System

    SBC: Continuous Solutions LLC            Topic: N16AT012

    The main focus of this research will be to develop effective modeling toolboxes to analyze CM current/voltage behaviors and fault conditions at any part of the power system in a cost and time effective way. The toolbox will assist with grounding strategies and enhance the baseline design. A CM equivalent circuit model [3] has been developed to analyze the CM current/voltage behaviors. In this work ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Integrated Computational Material Engineering Tool Set for Additive Manufacturing of Stainless Steel (316L)

    SBC: QUESTEK INNOVATIONS LLC            Topic: N16AT022

    In this Phase I STTR program, QuesTek Innovations, a leader in the field of integrated computational materials engineering (ICME) teaming with Prof. W.E. King from Lawrence Livermore National Laboratory (LLNL) as QuesTeks academic partner, proposes expand the computational Materials by Design technology by developing an Integrated Model Toolkit that enables the modeling of AM process by predicting ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Developing/Manufacturing/Selling an Affordable Clean Burning Biomass Heating/Cooking/Lighting Integrated Stove

    SBC: ASAT, INC.            Topic: 15NCER02

    Biomass heating/cooking stoves in developing countries do not efficiently cook food or heat houses, while consuming too much fuel and emitting pollution resulting in respiratory illnesses, premature death, and climate change. Affordable technologies found in 1.) EPA approved heating stoves, 2.) DOE funded cooking stoves, and 3.) TEG (thermoelectric generation) lighting devices, improve heating, co ...

    SBIR Phase I 2016 Environmental Protection Agency
US Flag An Official Website of the United States Government