You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Improved Manufacturing Technologies for Polymer Matrix Composite Engine Components

    SBC: 2PHASE TECHNOLOGIES, INC.            Topic: AF06115

    This proposal addresses the development and use of lightweight, low thermal-capacity reformable tooling materials for high-temperature composite processing evaluation, parts prototyping, trial production and full-rate production of PMC engine components. The weight-saving promise of high-temperature polymer matrix composites (PMCs) for engine components is offset by the very high costs of parts m ...

    SBIR Phase I 2006 Department of DefenseAir Force
  2. Vinyl Ester Compatible High-Modulus Fiber System for Composite Laminates

    SBC: Adherent Technologies, Inc.            Topic: N04094

    An aqueous-based finish (sizing) was developed in Phase I to improve the carbon/vinyl ester interfacial bond. The finish is composed of a reactive coupling agent, a low viscosity vinyl ester resin, a free radical inhibitor, and a surfactant. The reactive finishes substantially improved the carbon/vinyl ester interface compared to unsized or FOE sized materials. Failure mode analysis shows that ...

    SBIR Phase II 2006 Department of DefenseNavy
  3. High Temperature Finishes/Sizings for Polyimide Matrix Composites

    SBC: Adherent Technologies, Inc.            Topic: N04251

    New high-temperature sizings are needed to improve the properties and durability of carbon/polyimide composites. Compatibility with weaving and braiding operations and improved wetting during prepregging or resin infusing polyimide resin is also needed. Achieving these characteristics will result in reducing life cycle costs for jet engine composites through better property translation, reduced ...

    SBIR Phase II 2006 Department of DefenseNavy
  4. Finishing Process to Improve Interfacial Bonding in SiC/BMI Composites

    SBC: Adherent Technologies, Inc.            Topic: N05025

    High-temperature (HT) polymer matrix composites (PMCs) are desired for many aerospace and military applications. Silicon carbide (SiC) fibers provide a potentially attractive reinforcement for HT PMCs for applications ranging from propulsion systems to structures for the orbiting space plane. The sizings routinely added to commercial SiC fibers are not compatible with the new HT matrix resins. ...

    SBIR Phase II 2006 Department of DefenseNavy
  5. Phosphorous-Containing Epoxy Resins for Room Temperature VARTM

    SBC: Adherent Technologies, Inc.            Topic: N06T017

    The Navy intends to start using a significant quantity of composite structures in surface ship construction in an effort to decrease costs as well as to reduce the visibility of the ships to radar. The large size of the target structures necessitates the use of low temperature, non-autoclave processing techniques such as Vacuum Assisted Resin Transfer Molding (VARTM). In the recent past, most m ...

    STTR Phase I 2006 Department of DefenseNavy
  6. Closed Loop Composite Recycling Process

    SBC: Adherent Technologies, Inc.            Topic: AF06081

    The recycling of composites on a large scale is an unsolved problem. Currently, the material is either ground up into near-worthless fillers, incinerated, or digested using environmentally questionable technology. Adherent Technologies, Inc. has developed a number of technologies to reclaim valuable carbon fiber and other raw materials from these composites in a potentially economically feasible ...

    SBIR Phase I 2006 Department of DefenseAir Force
  7. High-Resolution Wide-Dynamic-Range MEMS-Based Closed-Loop Adaptive Optics System

    SBC: AGILOPTICS            Topic: AF05003

    AgilOptics’ Phase I SBIR proposed the development of a moire¢ Wave-Front Sensor (MWFS) test-bed to evaluate the MWFS design developed and patented by the University of New Mexico (UNM) and to extend the design for use in a closed-loop Adaptive Optic (AO) system with a Micro-Electro-Mechanical System (MEMS) Deformable Mirror (DM) corrector. Our Phase I results have shown that the MWFS provides i ...

    SBIR Phase II 2006 Department of DefenseAir Force
  8. MEMS-Based Aero-optics Simulator System

    SBC: AGILOPTICS            Topic: AF06T030

    This effort joins the MEMS-based deformable mirror technology available from AgilOptics, a New Mexico small business, with the aero-optics technology of the University of Notre Dame to develop an Aero-optics Simulator. This simulator will develop a library of aero-optics patterns to simulate atmospheric distortions for test and evaluation of military or commercial beam control systems.

    STTR Phase I 2006 Department of DefenseAir Force
  9. Multifunctional Protective Coatings for Spacecraft Surfaces

    SBC: APPLIED MATERIAL SYSTEMS ENGINEERING, INC.            Topic: MDA05T019

    The purpose of this STTR phase II proposal is to scale up and validate various space materials product forms based on material technology concepts proven feasible in STTR phase I efforts. The STTR phase I has successfully demonstrated low cost survivable multifunctional engineered material systems: Zinc-Assisted Self-Assembled Nano-Clusters (Z-SANCs™) and Transparent Conductive Oxide (TCO) syst ...

    STTR Phase II 2006 Department of DefenseMissile Defense Agency
  10. Low Cost, High Performance Inertial Rate Sensors- Airborne

    SBC: A-TECH CORPORATION            Topic: MDA04181

    ATA proposes development of an Advanced Rate Gyro (ARG) that blends two of ATA’s developmental designs to fulfill MDA’s airborne gyroscope requirements. Missile Defense Agency (MDA) requires such high performance gyros for Advanced Inertial Reference Units (aIRUs) for Airborne Laser DE systems and space-based surveillance and weapons systems. Current high performance gyros are marginal in mee ...

    SBIR Phase II 2006 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government