Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Development and Prototyping of a Digital Pulse Processor for Improved Coincidence Detection, Rejection, and Pulse Recovery, for High Count-Rate Silicon Drift Detectors

    SBC: 4pi Analysis, Inc.            Topic: N/A

    The recent emergence of the Silicon Drift detector (SDD), for use in energy dispersive x-ray spectrometry (EDS), has made possible x-ray event streams with count rates as high as 1-10 Mcps. A problem with existing digital signal processing, as applied to SDDs, is the significant presence of coincidence peaks above the x-ray background. These coincidence peaks occur with amplitudes comparable to lo ...

    SBIR Phase II 2009 Department of CommerceNational Institute of Standards and Technology
  2. Construction of a Force Probe for Characterization of Microscale Features

    SBC: INSITUTEC, INC.            Topic: N/A

    The Phase 2 objective is to provide NIST with a modular gauge head unit equipped with InsituTec's standing wave probe technology. The complete gauge head unit will be retrofitted to the NIST M48 which is one of the most precise measuring machines in the world. This unit will enable NIST to achieve the agency's program goal in dimensional metrology which is to provide microscale measurement capacit ...

    SBIR Phase II 2006 Department of CommerceNational Institute of Standards and Technology
  3. Dynamic Light Scattering Instrumentation Using Field Programmable Gate Array-based Digital Signal Processing

    SBC: VOXTEL, INC.            Topic: N/A

    An existing low-cost FPGA-based processing platform will be demonstrated with fiber-coupling to single-photon detectors, to perform photon-arrival time stamping with

    SBIR Phase I 2009 Department of CommerceNational Institute of Standards and Technology
  4. High Efficiency, Large-area, 1550 nm InGaAs Photodiodes

    SBC: VOXTEL, INC.            Topic: N/A

    A stable, well characterized InGaAs materials growth and photodetector fabrication process will be used to fabricate matched photodiodes optimized for balanced homodyne detection. The 1-mm-diameter p-i-n photodetectors will be manufactured back-illuminated with a 5-micron absorber, allowing residual light to reflect off the front-side metal to make a double pass through the active layer. Ultra-hig ...

    SBIR Phase I 2009 Department of CommerceNational Institute of Standards and Technology
  5. Efficient Low-Dark-Count Detector for Photon Counting

    SBC: VOXTEL, INC.            Topic: N/A

    Voxtel has demonstrated efficient high-speed photon counting with thresholded linear-mode avalanche photodiode (APD) receivers using multi-gain-stage InGaAs/InAIAs APDs. In contrast to Geiger APDs, thresholded photon-counting linear APD receivers are thought not to suffer afterpulsing, and can support maximum count rates (MCR) up to 2 or 3 orders of magnitude faster than Geiger APDs. However, the ...

    SBIR Phase II 2009 Department of CommerceNational Institute of Standards and Technology
  6. High Fidelity Modeling of Building Collapse with Realistic Visualization of Resulting Damage and Debris

    SBC: Applied Science International, LLC            Topic: DTRA082005

    To achieve a superior, more accurate simulation model for next generation progressive collapse of buildings, Applied Science International proposes use of the Applied Element Method (AEM) as the core solver of a fast running software tool for evaluating structural integrity following a blast or other extreme loading event. Due to its simplicity in modeling, speed of computing, constitutive models, ...

    SBIR Phase I 2009 Department of DefenseDefense Threat Reduction Agency
  7. HIGH EFFICIENCY COMPACT MODELING OF RADIATION EFFECTS

    SBC: Lynguent, Inc.            Topic: DTRA05001

    The objective of this research is to develop beta versions of tools for automatically migrating radiation effects predicted in TCAD level tools to compact modeling tools. This transition will enable compact models that possess radiation effects to be quickly generated, which can then be used in circuit design activity. This approach is a substantial improvement over the current ad hoc approaches. ...

    SBIR Phase II 2006 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government