Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. High-yield plant based manufacturing of bioengineered spider silk (Phytosilk)

    SBC: Orbital Technologies Corporation            Topic: A06T015

    The high strength to weight and elasticity properties of spider silk make it of significant interest for the production of advanced fibers for military and civilian applications. Plants may offer the only feasible mechanism to produce quantities of spider silk proteins sufficient to sustain large scale manufacturing of these high performance fibers. Successful implementation of bioengineered spid ...

    STTR Phase II 2007 Department of DefenseArmy
  2. Hypergolic Ignition of Gelled Propellants

    SBC: Orbital Technologies Corporation            Topic: A06T001

    Hypergolic propellant gels offer improved safety and performance flexibility. However, their longer ignition delays endanger engine health and preclude widespread use. Understanding the physical and chemical paths to ignition can enable improving ignition and realizing favorable IM characteristics of gels. ORBITEC and JHU propose targeted laboratory and modeling experiments to elucidate phenome ...

    STTR Phase II 2007 Department of DefenseArmy
  3. Development of ZnO-GaN hybrid spin LED

    SBC: CERMET, INC.            Topic: AF03T020

    Cermet, Inc in collaboration with Georgia Institute of Technology proposes to develop spin Light Emitting Diode (LED) in a 24 month Phase II program. The spin LED is a simple yet powerful spintronic device that produces circularly polarized light and is a potent tool to quantify the spin injection efficiency and spin polarization efficiency.

    STTR Phase II 2005 Department of DefenseAir Force
  4. Controllable Atomization for Supercritical Combustion

    SBC: Engi-Mat Co.            Topic: AF03T012

    nGimat Co., in collaboration with the Georgia Institute of Technology, and the Wright-Patterson AFB Air Force Research Laboratory, proposes to develop a fuel injection method and advanced numerical simulation tools for injection of fuel at supercritical conditions in aero-propulsion combustors. This project is designed to accelerate understanding and commercialization of transcritical and supercr ...

    STTR Phase II 2005 Department of DefenseAir Force
  5. Combustion-Based Actuator for Flow Control in Transonic Flight Applications

    SBC: Virtual Aerosurface Technologies, Inc.            Topic: AF03T014

    Combustion powered actuation (COMPACT) is a flow control technology developed at Georgia Tech which utilizes a miniature combustion chamber (cubic centimeter scale) to produce high-speed pulsed jets suitable for aerodynamic flow control (separation control, drag reduction, shock control, etc.) at transonic or supersonic speeds. The system is lightweight, can be operated with passive fluidic valve ...

    STTR Phase II 2005 Department of DefenseAir Force
US Flag An Official Website of the United States Government