You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Wave Energy Harvesting to Power Unmanned Surface Vehicles

    SBC: Advanced Mechanical Technology, Inc.            Topic: N05T021

    Recent world events have highlighted the need for timely and accurate intelligence data to assess threats and combat terror. An unmanned surface vehicle (USV ) can potentially perform intelligence, surveillance and reconnaissance (ISR) missions, provide force protection, hunt for mines in coastal waters or harbors, and provide port security. USVs under development by the Navy are powered by the ...

    STTR Phase I 2005 Department of DefenseNavy
  2. Reducing Complex Physico-Chemical Model Systems

    SBC: AERODYNE RESEARCH INC            Topic: A05T018

    An important and fundamental challenge in science and engineering is the need to understand the system output variables (model predictions, measured observables) and their relation to the system¡¦s input variables (model inputs, specified experimental conditions). This project proposes to address this problem through the development of a family of numerical tools for implementing High Dimension ...

    STTR Phase I 2005 Department of DefenseArmy
  3. Development and flight test demonstration of an innovative practical Autonomous Formation Flying System (AFFS) for manned rotorcraft.

    SBC: Aerotonomy, Incorporated            Topic: A05T011

    Aerotonomy, Incorporated and our Research Institution partner the Georgia Institute of Technology (GIT) will combine an innovative adaptive guidance system, the latest knowledge in autonomous adaptive rotorcraft control, and intuitive pilot interface techniques to arrive at a safe, practical, Autonomous Formation Flying System (AFFS) for manned rotorcraft. This Phase I project will culminate in a ...

    STTR Phase I 2005 Department of DefenseArmy
  4. Multifunctional Design of Load Bearing Antenna Structures for Small UAVs

    SBC: Aerotonomy, Incorporated            Topic: AF05T019

    Aerotonomy, Incorporated and our research institution partner Georgia Tech Research Institute (GTRI) will apply the latest knowledge in conformal load bearing antenna design, structural and electromagnetic modeling, and optimization techniques to develop a unique 2 Stage Multi-Disciplinary Optimization (MDO) system that supports the design of highly integrated miniature broadband antenna structure ...

    STTR Phase I 2005 Department of DefenseAir Force
  5. New Generation Hybrid Carbon/Ceramic Nanocomposites

    SBC: AGILTRON, INC.            Topic: AF05T023

    Based on in-depth experience with advanced optical ceramics, nano-particle coating, nanoceramic sintering and superplasticity deformation, in this program, AGILTRON Inc. and Florida International University, and University of California at Davis propose to develop next generation airframe and engine materials made of CNT/alumina nano-composites. The proposed approach uniquely combines low-cost and ...

    STTR Phase I 2005 Department of DefenseAir Force
  6. Visible Wavelength Negative Index Materials

    SBC: AGILTRON, INC.            Topic: A05T015

    Leveraging Agiltron's recent breakthrough in photonic nano-manufacturing technology and research on photonic crystals together with Northeastern University's know-how in the research of negative index material, we propose to design and fabricate a negative index photonic crystal material and establish its potential for negative refraction and subwavelength imaging at visible wavelengths. Our preli ...

    STTR Phase I 2005 Department of DefenseArmy
  7. Low Loss Optic Fiber Sparse Tapped Delay Module

    SBC: AGILTRON, INC.            Topic: ST051006

    Leveraging Agiltron's recent breakthrough in low loss/low cost solid-sate fiberoptic digital delay lines and variable splitter, we propose to develop a new type of affordable reconfigurable sparse delay line module. The proposed approach overcomes the deficiencies in limited delay time and excessive loss associated with electronic sparse delay line modules and provides sufficiently long delays an ...

    STTR Phase I 2005 Department of DefenseDefense Advanced Research Projects Agency
  8. Wide Field of View Electronically Stearable Imaging Sensors

    SBC: AGILTRON, INC.            Topic: ST051004

    This proposal provides a breakthrough solution to flexibly direct the field of view of an imaging system over a wide acceptance angle, having significant advantages over other candidate technologies. The innovation is based on an unconventional beam steering technology covering a wide angle ranging over at high speed with low power consumption and in a compact and lightweight construction. The ...

    STTR Phase I 2005 Department of DefenseDefense Advanced Research Projects Agency
  9. Silicon-Based Photonic Crystal Lasers

    SBC: Altair Center, Llc.            Topic: AF05T013

    ALTAIR Center in cooperation with the University of Rochester proposes to develop the first silicon-based photonic crystal laser diode. The photonic crystal microcavity forms gain region of the laser diode. This enhances the system efficiency. The laser operating either in bandgap edge emitting mode with enhanced density of states or using defect mode in the photonic crystal structure will exhibit ...

    STTR Phase I 2005 Department of DefenseAir Force
  10. Terahertz-Frequency Lasers based on Semiconductor Nanocrystals

    SBC: Altair Center, Llc.            Topic: A04T015

    ALTAIR Center in cooperation with the NanoTech Institute at the University of Texas at Dallas proposes to develop a new class of terahertz (THz) lasers generating about 1 mW in the frequency range 0.3-10 THz at room temperature. The proposed concept is based on employing the semiconductor nanocrystals (quantum dots). The nanocrystal emitters are optically pumped by commercially available powerful ...

    STTR Phase II 2005 Department of DefenseArmy
US Flag An Official Website of the United States Government