You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Remote Sensing System for Monitoring Cardiopulmonary Signals

    SBC: VIRTUAL EM INC.            Topic: AF19AT003

    Virtual EM and Case Western Reserve University are teaming to propose a standoff cardiopulmonary sensing technology to aid remote monitoring of airman and others ' physiological state of health both in the field and in the office environments. While the pulmonary sensing unit could be operated meters away, the cardio signals are picked up in closer proximity to the body.

    STTR Phase I 2019 Department of DefenseAir Force
  2. Multifunctional Integrated Sensing Cargo Pocket UAS

    SBC: ENDECTRA LLC            Topic: AF19AT016

    Palm-sized unmanned aerial systems (nano UAS) weighing tens of grams have evolved to the point where they are becoming useful to the warfighter. However, their small mass, fragility, and limited batteries still necessitate the use of emerging, low mass/power technologies to meet the full range of potential missions, including new autonomous flight control and collision avoidance strategies, struct ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. CogTracer

    SBC: SOAR TECHNOLOGY INC            Topic: AF18BT001

    From individualized training, to responsive decision-support, and improved human-machine teaming, the ability to accurately predict the cognitive state of an individual in real time would open the door for numerous technologies that would benefit the operational needs of the warfighter. Until now, much of the research using EEG for operational needs has focused on tailoring a system to detect only ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Rapid Nondestructive Inspection of Traditionally Uninspectable Adhesively-Filled Composite Joints

    SBC: THERMAL WAVE IMAGING INC            Topic: AF18BT016

    NDI of composite Pi/T-Joints presents significant challenges to existing inspection technologies resulting in a barrier to implementation in production. We will investigate feasibility of developing an active thermography NDI solution for real-world inspection of composite structures with T / Pi- joints during the manufacturing process (both green and cured states). Based on the extensive experien ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. NEUTRON: Network Enforcement Using TRansctiONs

    SBC: SMART INFORMATION FLOW TECHNOLOGIES LLC            Topic: AF17BT004

    SIFT proposes Network Enforcement Using TRansactONs (NEUTRON) a dynamic fine-grained network enforcement policy design that captures network dependencies. NEUTRON closes the knowledge gap between mission needs and observed network traffic to increase mission network awareness. Then using that knowledge develops a revolutionary security enforcement policy based on network transactions. It reduces t ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Modeling and Simulation for Design, Development, Testing and Evaluation of Autonomous Multi-Agent Models

    SBC: SOAR TECHNOLOGY INC            Topic: AF15AT14

    ABSTRACT: The rapid continued development of unmanned air systems (UAS) is enabling new mission types, in-creased mission effects, and increased airman safety. However, these advances also present numerous challenges to airman-machine interaction, tactics development, and defense. The rapid development pace has produced a situation where new technologies are outpacing the knowledge of how best to ...

    STTR Phase I 2015 Department of DefenseAir Force
  7. Fused silica ion trap chip with efficient optical collection system for timekeeping, sensing, and emulation

    SBC: TRANSLUME INC            Topic: AF10BT17

    ABSTRACT: We will design, fabricate and test a quantum processing unit (QPU) based on a symmetric ion trap chip. The trap will provide trapping depth similar to that obtain with macrosize Paul traps. In addition to the ion trap, this chip will incorporate integrated optical systems which will deliver the light fields required by the elementary quantum processing unit (or quantum sensing unit). ...

    STTR Phase II 2012 Department of DefenseAir Force
  8. Hybrid Chemical-Electric Propulsion (HCEP)

    SBC: Electrodynamic Applications Inc            Topic: AF11BT10

    ABSTRACT: The proposed Phase I efforts seek to develop a dual-mode Hybrid ChemicalElectric Propulsion thruster concept design based on the extensive microwave torch/arcjet experience of PSU and Hall and ion experience of EDA. The primary focus of the Phase I effort will be demonstrate the operation of an ionic liquid microwave thruster in the high-T/P regime and the basic operation of a Hall and ...

    STTR Phase I 2012 Department of DefenseAir Force
  9. Satellite Drag Model for Near Real Time Operation

    SBC: MICHIGAN AEROSPACE CORP            Topic: AF11BT29

    ABSTRACT: Michigan Aerospace Corporation, in cooperation with the University of Michigan"s Department of Atmospheric, Oceanic, and Space Sciences, will refine existing upper atmospheric models and apply them to the problem of predicting satellite drag. The primary goal of this Phase 1 project is to run a fully validated version of University of Michigan"s Global Ionosphere Thermosphere Model (GI ...

    STTR Phase I 2012 Department of DefenseAir Force
  10. Metamaterial-based MEM ultra-low-loss non-dispersive phased-array antenna

    SBC: A. BROWN DESIGN            Topic: AF11BT28

    ABSTRACT: Under this collaborative effort between A Brown Design, Michigan State University, and Raytheon, a novel phase shifter design is proposed. The phase shifter design builds upon existing RF MEMS capacitive technology by co-integrating MEMS switches with metamaterial unit cells. The metamterial unit cell design is versatile and allows significant degree of freedom in integration and design ...

    STTR Phase I 2012 Department of DefenseAir Force
US Flag An Official Website of the United States Government