You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Mesh Generation and Control for Moving Boundary Problems

    SBC: HYPERCOMP INC            Topic: A12aT012

    In this STTR project we aim to build software interfaces and enhancements to existing parallel mesh adaptation libraries for applications in high performance flow modeling. In Phase-I we demonstrated a preliminary implementation of such a system and identified technology needs. Phase-II development will include both open source, as well as commercially supported mesh adaptation software and interf ...

    STTR Phase II 2014 Department of DefenseArmy
  2. Joint Transport and Routing Optimization for Adaptive Satellite Networks

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: AF11BT12

    ABSTRACT: Due to increasing communications demand for tactical mission operations force the DoD to initiative to migrate the existing circuit-switched, bent-pipe satellite communication systems to the onboard packet switched satellite systems using Internet Protocols. The new approach offers significant flexibility and performance gain, but there are still tough challenges, e.g., high bit error r ...

    STTR Phase II 2014 Department of DefenseAir Force
  3. Advanced Wavelength Tuners for Chem-Bio Detection Lasers

    SBC: LFK Technology Corp.            Topic: A11aT024

    Several laser types are in development by the government for advanced proximal sensors, including the quantum cascade laser, the miniature solid state laser with optical parametric oscillator and the miniature CO2 gas laser. The enabling critical component for all these advanced transmitters is the compact, robust, rapid, precision wavelength selector. It is proposed to develop and deliver a sta ...

    STTR Phase II 2014 Department of DefenseArmy
  4. Transition to the Next Generation High Power Phased Array Transceivers

    SBC: G. A. Tyler Associates, Inc.            Topic: AF12BT13

    ABSTRACT: Given the results obtained in the Phase I effort, we are now in a position to advance to the next generation of High Power Phased Array Transceiver Systems. The new approach proposed here is to use enough elements in the phased array to ensure that significant wavefront compensation performance can be obtained with only piston commands. A system of this nature can be developed in two ...

    STTR Phase II 2014 Department of DefenseAir Force
  5. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This project address the fabrication of solar blind detectors from the MgZnO material system. Both MBE and MOCVD material growth techniques will be used for deposition of the required material layers. Simulation software we be used to aid in the design of the photodetector structure. Devices will be fabricated from the grown structures and their electrical and optical characteristics determined.

    STTR Phase II 2014 Department of DefenseArmy
  6. Printable Integrated Photonic Devices

    SBC: Abeam Technologies Inc.            Topic: AF11BT05

    ABSTRACT: aBeam Technologies, Inc. proposes a new printing technology for fabricating photonic devices. This nanofabrication process could potentially reduce to a single step, the fabrication of photonic crystals by direct imprinting on inorganic materials. The method is low cost and suitable for large-scale areas. In Phase I, the demonstration of feasibility of the method provides the basis for ...

    STTR Phase II 2014 Department of DefenseAir Force
  7. MIMO Radar Clutter Modeling

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF11BT14

    ABSTRACT: We propose development of an efficient physics-based computational capability for simulation of complex MIMO radar clutter, with applicability to single- and multi-platform transmit-receive systems, which accounts accurately, on the basis of Maxwell's equations, for all relevant multi-path propagation and scattering effects. Our effort will enable simulation of scattering by realis ...

    STTR Phase II 2014 Department of DefenseAir Force
  8. Tool for Blade Stress Estimation during Multiple Simultaneous Vibratory Mode Responses

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF11BT22

    ABSTRACT: NextGen Aeronautics, leveraging past experience in generating stress spectra from static and vibratory loads as well as knowledge of gas turbines, is proposing a method for estimating blade stresses from multiple vibratory loads in rotating systems from limited manufacturer data from Campbell diagrams and strain gage blade stresses. The method hinges on utilizing 3D parametric generic i ...

    STTR Phase II 2014 Department of DefenseAir Force
  9. Biologically-inspired Integrated Vision System

    SBC: SPECTRAL IMAGING LABORATORY            Topic: AF12BT03

    ABSTRACT: The U.S. Air Force has a need to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are to be deployed on high altitude drones to enhance their intelligence, surveillance, and reconnaissance (ISR) capabilities. Smaller versions o ...

    STTR Phase II 2014 Department of DefenseAir Force
  10. Scaled Transonic Dynamic Aeroelasticity Through Wind Tunnel Testing (ST-DAWTT)

    SBC: CREATIVE AERO ENGINEERING SOLUTIONS INC.            Topic: AF12BT12

    ABSTRACT: In Phase II of this research, Creative Aero Engineering Solutions (CAES) and its academic partner University of California Los Angeles (UCLA) will design, fabricate, and test a semispan model based on the novel aeroelastic models analyzed in Phase I. The objectives are to develop a physics-based understanding of transonic aeroelasticity near Mach 1, and to provide high-fidelity experime ...

    STTR Phase II 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government