Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until September, 2020.

  1. More Efficient GaN- SiGe based MMICs for Communication and Radar Systems

    SBC: Episensors, Inc.            Topic: N14AT007

    Active Electronic Scanned Array (AESA) radars play a strategic role in surveillance and reconnaissance. A GaN based T/R circuit will be radiation-hard but difficult to integrate with the remainder of the signal chain due to incompatible technologies. SiGe HBT technology, with its high frequency performance and the ability to blend in with CMOS, can act as a bridge between the high frequency III-V ...

    STTR Phase I 2014 Department of DefenseNavy
  2. Ultra-Lightweight, High-Efficiency Epitaxial Lift-Off Solar Cells and Arrays

    SBC: Microlink Devices, Inc.            Topic: N14AT003

    MicroLink Devices and the University of Notre Dame propose to develop an ultra-lightweight, high-efficiency, GaAs-based, multi-junction solar cell that will be suitable for use in future platforms requiring very high specific power (>3.0 kW/kg) and very high areal power density (>370 W/m2). We will achieve this result by reducing the metal content of MicroLinks current inverted metamorphic (IMM), ...

    STTR Phase I 2014 Department of DefenseNavy
  3. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: Tusaire Incorporated            Topic: N14AT020

    Advanced effective Micro-glider development will be conceived under this Phase I effort.

    STTR Phase I 2014 Department of DefenseNavy
  4. Bioelectronic Fusion Sensor System

    SBC: Sentient Science Corporation            Topic: N14AT019

    To address the Navy"s need for a common, scalable, platform for multi-modal 1pA level current sensing for Electrocardiogram (ECG), Electroencephalogram (EEG), and Electrodermal Response (EDR) to be fielded as a miniature wearable device with non-contact electrodes, Sentient and the State University of New York (SUNY) propose to develop the Bioelectronic Fusion Sensor System (BioFuSenS) that will a ...

    STTR Phase I 2014 Department of DefenseNavy
  5. Microvascular Composites for Novel Thermal Management Devices

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT09

    ABSTRACT: Living systems rely on pervasive vascular networks to enable a plurality of biological function, exemplified by natural composite structures that are lightweight, high-strength, and capable of mass and energy transport. In contrast, synthetic composites possess high strength-to-weight ratios but lack the dynamic functionality of their natural counterparts. CU Aerospace, with team partne ...

    STTR Phase I 2014 Department of DefenseAir Force
  6. Nonequilibrium Plasma-Assisted Combustion-Efficiency Control in Vitiated Air

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT04

    ABSTRACT: CU Aerospace (CUA) and team partner the University of Illinois at Urbana-Champaign (UIUC) propose to perform research, development and demonstration of experimental quenching free measurements of heat-release in a realistic highly turbulent plasma-assisted flame. Kinetics models will be correspondingly updated and detailed 3D multiphysics simulations will be validated by the measuremen ...

    STTR Phase I 2014 Department of DefenseAir Force
  7. High-Speed Electronically Tunable Multi Fiber-Optic Wavelength Filter based on Ultra-High-Resolution Super-Compact Grating on Silicon-Photonic Platfor

    SBC: Optonet, Inc            Topic: N12AT005

    The proposed project will undertake the research, design, and development of key concepts and technologies for a high-speed electronically tunable channel filter, based on monolithically integrated ultra-high-resolution super-compact grating (UHR-SCG) technology that has been developed in OptoNet. The grating will be realized on Silicon-Photonic Electronic-Photonic Integrated (EPIC) Platform that ...

    STTR Phase II 2014 Department of DefenseNavy
  8. Quantum and Nanostructure Enhanced Epitaxial Lift-Off Solar Cells

    SBC: Microlink Devices, Inc.            Topic: AF13AT13

    ABSTRACT: MicroLink and its collaborators, Rochester Institute of Technology and Magnolia Solar, will develop a high-efficiency, single-junction, epitaxial lift-off (ELO) GaAs solar cell by incorporating nano-scale features, such as quantum dots and optically functional textures, within the solar cell structure. The principal technical objective of the project is to increase the AM0 efficiency o ...

    STTR Phase I 2014 Department of DefenseAir Force
  9. Electrochemical Conversion of CO2 and Water to Syngas

    SBC: DIOXIDE MATERIALS, INC.            Topic: AF11BT07

    ABSTRACT: The objective of this project is to move an energy efficient process for the conversion of carbon dioxide and water into syngas, a key feedstock for the production of synthetic chemicals. BENEFIT: If we are successful we will have a new process to convert air water and sunlight into transportation fuels. That will result in a domestic source of fuels that does not compete with the foo ...

    STTR Phase II 2014 Department of DefenseAir Force
  10. Decision Making under Uncertainty for Dynamic Spectrum Access

    SBC: INFOBEYOND TECHNOLOGY, LLC            Topic: AF13AT02

    ABSTRACT: Due to scarcity of spectrum, Dynamic Spectrum Access (DSA) becomes a needed technology to improve the utilization of electromagnetic spectrum for DoD satellite communication. However, current DSA approaches are developed for terrestrial communications without addressing the unique challenges for SATCOM environments such as error-prone spectrum sensing, high mobility, and large coverage. ...

    STTR Phase I 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government