You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coils for Human Whole Body Imaging at 7T

    SBC: LIFE SERVICES L.L.C.            Topic: NIBIB

    DESCRIPTION provided by applicant For this Phase II STTR proposal the investigators plan to develop and commercialize the radiofrequency RF coil technology to make T body MRI possible and to translate this new technology to vastly improve T clinical MRI as well In the Phase I project leading to this proposal all specific aims were accomplished to demonstrate the feasibility of safely an ...

    STTR Phase II 2014 Department of Health and Human ServicesNational Institutes of Health
  2. Bioelectronic Fusion Sensor System

    SBC: SENTIENT SCIENCE CORPORATION            Topic: N14AT019

    To address the Navy"s need for a common, scalable, platform for multi-modal 1pA level current sensing for Electrocardiogram (ECG), Electroencephalogram (EEG), and Electrodermal Response (EDR) to be fielded as a miniature wearable device with non-contact electrodes, Sentient and the State University of New York (SUNY) propose to develop the Bioelectronic Fusion Sensor System (BioFuSenS) that will a ...

    STTR Phase I 2014 Department of DefenseNavy
  3. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: Tusaire Incorporated            Topic: N14AT020

    Advanced effective Micro-glider development will be conceived under this Phase I effort.

    STTR Phase I 2014 Department of DefenseNavy
  4. Electrical Energy Storage System by SMES Method for Ultra-High Power and Energy Density

    SBC: TAI-YANG RESEARCH COMPANY            Topic: AF11BT31

    ABSTRACT: The Tai-Yang Research Company (TYRC) of Tallahassee, FL in collaboration with Dr. Justin Schwartz of the North Carolina State University (NCSU) in Raleigh, NC propose in this Phase 2 effort to develop the critical technologies necessary for the implementation and operation of an airborne high temperature superconductor (HTS) superconducting magnetic energy storage (SMES) device with par ...

    STTR Phase II 2014 Department of DefenseAir Force
  5. Decision Making under Uncertainty for Dynamic Spectrum Access

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT02

    ABSTRACT: Due to scarcity of spectrum, Dynamic Spectrum Access (DSA) becomes a needed technology to improve the utilization of electromagnetic spectrum for DoD satellite communication. However, current DSA approaches are developed for terrestrial communications without addressing the unique challenges for SATCOM environments such as error-prone spectrum sensing, high mobility, and large coverage. ...

    STTR Phase I 2014 Department of DefenseAir Force
  6. Secure Efficient Cross-domain Protocols

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT08

    ABSTRACT: Coordinating and sharing information across multi-level security (MLS) networks are of great interest in many military applications. However, it is very challenging to accomplish those goals due to the heterogeneous security classifications of different network domains. The recent proposed cross-domain solutions (CDS) provide initial steps to make such applications possible. However, th ...

    STTR Phase I 2014 Department of DefenseAir Force
  7. Development of Multidisciplinary, Multi-Fidelity Analysis and Integration of Aerospace Vehicles

    SBC: VEXTEC Corporation            Topic: AF08BT03

    ABSTRACT: Current aircraft design approaches incorporate the use of many high fidelity models for point solutions of individual disciplines. Sophisticated model integration techniques are not yet readily available and a significant amount of individual discipline “stovepiping” exists. Individual handoffs of point solutions between disciplines often results in repeated individual data interpre ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Deterministic and Statistical Characterization of the Impact of Control Surface Freeplay on Flutter and Limit-Cycle Oscillation (LCO) using Efficient

    SBC: Advanced Dynamics, Inc.            Topic: N10AT003

    Research is proposed for the development and implementation of state of the art computational and experimental tools for the investigation of the impact of control surface freeplay on the flutter and limit cycle oscillation characteristics of two-dimensional and three-dimensional wings in subsonic and transonic flow. Highly efficient and accurate aeroelastic simulation tools will be constructed ba ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Multiscale Modeling and Analysis of Foreign Object Damage in Ceramic Matrix Composites with the Material Point Method

    SBC: Advanced Dynamics, Inc.            Topic: N10AT010

    This Small Business Technology Transfer Phase I project is aiming at developing and implementing a multiscale composite model to predict the ceramic matrix composite (CMC) response to the impact loading by foreign objects. In particular, the physics-based model will be applied to describe the multiscale foreign object damage (FOD) phenomena of CMCs due to the complex nature of impact dynamics coup ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Meshfree-Based Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures

    SBC: Advanced Dynamics, Inc.            Topic: N10AT041

    The aluminum alloys have low density, relatively high strength, and high strength-to-weight ratio, which brings some major advantages in marine structure design, fabrication, and operations. However, marine ships are subjected to a complex and severe loading, and the typical failure mode of aluminum under extreme dynamics loading such as wave slamming and high velocity impact is ductile fracture. ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government