Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Scale up of EO polymers and their utilization in novel nano-imprinted sub-wavelength waveguide-based Modulators and Arrays

    SBC: TIPD, LLC            Topic: AF11BT01

    ABSTRACT: The Phase II technical objectives follow directly from the Phase I effort, where all tasks necessary for RF photonic receiver fabrication were demonstrated. The Phase II effort will pursue two major objectives: 1) further development of SEO100 EO polymer based chips, packaged devices and arrays in collaboration with University of Dayton (antenna designs), taking advantage of multiphoto ...

    STTR Phase II 2014 Department of DefenseAir Force
  2. Cognitive Radio Spectrum Management and Waveform Adaptation for Advanced Wideband Space Communication Systems

    SBC: SHARED SPECTRUM COMPANY            Topic: AF11BT03

    ABSTRACT: Shared Spectrum Company (SSC) partners with Virginia Tech (VT) to develop resilient and agile space communication systems using innovative cognitive radio techniques. The objective of this STTR Phase II project is to develop anti-jamming capability using frequency agility provided by Dynamic Spectrum Access (DSA) technology for satellite communications (SATCOM) systems. The SSC team foc ...

    STTR Phase II 2014 Department of DefenseAir Force
  3. High Power WDM Based Upon Mode Coupling

    SBC: AdValue Photonics Inc            Topic: AF13AT03

    ABSTRACT: AdValue Photonics and University of Arizona propose to demonstrate the capability of fabricating wavelength division multiplexers (WDM) for high-power fiber laser applications. It is based on AdValue Photonics"unique fused fiber technology using large-mode-area (LMA) fibers. Both polarization-maintaining (PM) and non-PM LMA fiber WDMs will be fabricated. By the end of Phase I, two proto ...

    STTR Phase I 2014 Department of DefenseAir Force
  4. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION RESEARCH AND FLOW TECHNOLOGY INC            Topic: AF13AT12

    ABSTRACT: The innovation proposed is a computationally-tractable, physics-based, portable turbulent combustion modeling strategy for application to a wide range of Air Force aero-propulsive systems, including augmentors, liquid rockets and scramjets. This modeling strategy will be implemented within an Application Programming Interface (API) library suitable for easy integration within Air Force ...

    STTR Phase I 2014 Department of DefenseAir Force
  5. Semiconductor Nanomembrane based Sensors for High Frequency Pressure Measurements

    SBC: Nanosonic Inc.            Topic: AF13AT15

    ABSTRACT: The Air Force Phase I program would develop and demonstrate semiconductor nanomembrane (NM) based sensors and arrays for high frequency pressure measurements, using SOI (Silicon on Insulator) NM technique in combination with our pioneering HybridsilTM copolymer nanocomposite materials. NanoSonic would work cooperatively with Virginia Tech to develop an improved mechanical and electrical ...

    STTR Phase I 2014 Department of DefenseAir Force
  6. Powerful Source of Collimated Coherent Infrared Radiation with Pulse Duration Fewer than Ten Cycles

    SBC: NP Photonics, Inc.            Topic: A14AT006

    Few-cycle mid-infrared lasers are highly demanded for a variety of practical applications. NP Photonics and University of Arizona propose to develop a wavelength tunable and power-scalable optical parametric laser system at 8-12 micron capable of producing collimated few-cycle pulses with pulse energy>100 microJoule. In this phase I program, we will design the whole laser system and do a feasibil ...

    STTR Phase I 2014 Department of DefenseArmy
  7. High-Performance Magnesium Alloys and Composites by Efficient Vapor Phase Processing

    SBC: Directed Vapor Technologies International, Inc.            Topic: A14AT007

    The low density of magnesium makes it of interest for the development of advanced materials having high specific strength and stiffness. Current Mg applications, however, are limited by the performance and cost/quality relationships of existing Mg-alloy systems. One approach to obtain improved Mg alloys is through the development of new alloys and/or Mg-based composite materials that are enabled t ...

    STTR Phase I 2014 Department of DefenseArmy
  8. Technology to Regulate Circadian Rhythm for Health and Performance

    SBC: BRAIN STATE TECHNOLOGIES LLC            Topic: A14AT009

    We propose a wearable, dual-use neurotechnology device. The Personal Brainwave Headband, driven by tablet or smartphone, is designed for noninvasive closed-loop acoustic stimulation, to permit improved circadian regulation. It will measure brain electrical activity from scalp overlying four key sectors of cortex, perform high-resolution spectral analysis of the signals, and use software algorith ...

    STTR Phase I 2014 Department of DefenseArmy
  9. Biologically-Derived Targeted Antimicrobials for Textile Applications

    SBC: TECHULON, INC.            Topic: A14AT012

    Skin infections caused by bacteria represent a significant risk to wounded soldiers. The most common source of bacterial infection is found in the fabrics of clothing, boots, and gear worn by the warfighter. Reducing the risk of infection for soldiers by treating the source fabrics will lead to positive outcome and support medically-related activities in non-sterile environments encountered by t ...

    STTR Phase I 2014 Department of DefenseArmy
  10. Multiphysics-based Sensor Fusion

    SBC: Guerci Consulting LLC            Topic: AF13AT01

    ABSTRACT: A new approach to multisensor fusion is proposed that utilizes a knowledge-aided (KA) multi-physics model as the main fusion engine, as opposed to traditional purely statistical methods. The new Multi-Physics Sensor Fusion (MPSF) is enabled by advances in high performance computing, knowledge-aided (KA) processing, and new techniques in multi-physics modeling. Traditional sensor fusion ...

    STTR Phase I 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government