You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This project address the fabrication of solar blind detectors from the MgZnO material system. Both MBE and MOCVD material growth techniques will be used for deposition of the required material layers. Simulation software we be used to aid in the design of the photodetector structure. Devices will be fabricated from the grown structures and their electrical and optical characteristics determined.

    STTR Phase II 2014 Department of DefenseArmy
  2. Real Time 3-D Modeling and Immersive Visualization for Enhanced Soldier Situation Awareness

    SBC: Carnegie Robotics LLC            Topic: A12aT003

    We propose a rapid mapping and 3-D visualization system especially suited for inside buildings, tunnels, urban canyons, and other environments where GPS may be poor or not available. The system--which was fully demonstrated in our Phase I effort-- includes mobile Sensor Nodes that wirelessly supply compressed 3D range data and color imagery to a central Fusion Node. The Fusion Node runs 3D recon ...

    STTR Phase II 2014 Department of DefenseArmy
  3. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION RESEARCH & FLOW TECHNOLOGY INC            Topic: AF13AT12

    ABSTRACT: The innovation proposed is a computationally-tractable, physics-based, portable turbulent combustion modeling strategy for application to a wide range of Air Force aero-propulsive systems, including augmentors, liquid rockets and scramjets. This modeling strategy will be implemented within an Application Programming Interface (API) library suitable for easy integration within Air Force ...

    STTR Phase I 2014 Department of DefenseAir Force
  4. Decision Making under Uncertainty for Dynamic Spectrum Access

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT02

    ABSTRACT: Due to scarcity of spectrum, Dynamic Spectrum Access (DSA) becomes a needed technology to improve the utilization of electromagnetic spectrum for DoD satellite communication. However, current DSA approaches are developed for terrestrial communications without addressing the unique challenges for SATCOM environments such as error-prone spectrum sensing, high mobility, and large coverage. ...

    STTR Phase I 2014 Department of DefenseAir Force
  5. Secure Efficient Cross-domain Protocols

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT08

    ABSTRACT: Coordinating and sharing information across multi-level security (MLS) networks are of great interest in many military applications. However, it is very challenging to accomplish those goals due to the heterogeneous security classifications of different network domains. The recent proposed cross-domain solutions (CDS) provide initial steps to make such applications possible. However, th ...

    STTR Phase I 2014 Department of DefenseAir Force
  6. Autonomous Broad Spectrum Environmental Sentinels

    SBC: NEVADA NANOTECH SYSTEMS, INC.            Topic: A13AT017

    We propose a platform for aerial environmental monitoring based on the integration of two advanced technologies for the first time: a lightweight, flying robotic platform capable of hovering and swarming, and a compact, low-power chemical sensor platform called the Molecular Property Spectrometer (MPS): a robust, low-cost, silicon-chip-based micro-electro-mechanical system (MEMS) that has been use ...

    STTR Phase I 2014 Department of DefenseArmy
  7. Intracranial Hematoma/ Burr Hole and Trauma Flap Simulator

    SBC: VEREFI TECHNOLOGIES, INC.            Topic: OSD05T004

    Traumatic brain injury has dramatically increased in military and civilian settings owing to widespread bombings and improvised explosive devices. In many battlefield settings, the availability of neurosurgeons is limited. However, rapid treatment of intracranial hematomas can save lives and limit permanent neurologic sequelae. Training non-neurosurgeons to perform emergency burr holes and limi ...

    STTR Phase II 2006 Department of DefenseArmy
  8. New Energetic Solid Propellant Ingredients

    SBC: MACH I Inc.            Topic: OSD05T001

    Boron has significant potential as a high energy density fuel in munitions and propellants. Its superior energy density makes it attractive as a fuel component in conventional solid propellants, as well as fuel slurries for ramjet applications. For a ramjet ducted rocket, theoretical density impulses of 1600-1800 sec-g/cm3 have been reported, 45% higher than the best hydrocarbon formulation. Bo ...

    STTR Phase II 2006 Department of DefenseAir Force
  9. Passive High Performance Heat Storage and Dissipation Technology for Transient High Power Thermal Management

    SBC: ADVANCED COOLING TECHNOLOGIES INC            Topic: MDA04T010

    Advanced Cooling Technologies, Inc. (ACT), in partnership with the University of Nevada-Reno (UNR), is developing a high performance metal hydride heat storage and dissipation technology for high power lasers. The proposed technology incorporates heat pipes for passive acquisition and dissipation of high heat flux heat loads and metal hydrides for storage of the heat loads during the laser operati ...

    STTR Phase II 2006 Department of DefenseAir Force
  10. High Power IMPATT-Mode AlGaN/GaN HFETs for mm-Wave Applications

    SBC: SVT ASSOCIATES INC            Topic: A05T008

    This STTR Phase II program is directed toward the development of a GaN-based hetrostructure filed effect transistor (HFET) for high-power mm-wave applications. The device makes use of a recently discovered impact ionization avalanche transit time (IMPATT)

    STTR Phase II 2006 Department of DefenseArmy
US Flag An Official Website of the United States Government