You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Scale up of EO polymers and their utilization in novel nano-imprinted sub-wavelength waveguide-based Modulators and Arrays

    SBC: TIPD LLC            Topic: AF11BT01

    ABSTRACT: The Phase II technical objectives follow directly from the Phase I effort, where all tasks necessary for RF photonic receiver fabrication were demonstrated. The Phase II effort will pursue two major objectives: 1) further development of SEO100 EO polymer based chips, packaged devices and arrays in collaboration with University of Dayton (antenna designs), taking advantage of multiphoto ...

    STTR Phase II 2014 Department of DefenseAir Force
  2. High Power WDM Based Upon Mode Coupling

    SBC: ADVALUE PHOTONICS INC            Topic: AF13AT03

    ABSTRACT: AdValue Photonics and University of Arizona propose to demonstrate the capability of fabricating wavelength division multiplexers (WDM) for high-power fiber laser applications. It is based on AdValue Photonics"unique fused fiber technology using large-mode-area (LMA) fibers. Both polarization-maintaining (PM) and non-PM LMA fiber WDMs will be fabricated. By the end of Phase I, two proto ...

    STTR Phase I 2014 Department of DefenseAir Force
  3. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION RESEARCH & FLOW TECHNOLOGY INC            Topic: AF13AT12

    ABSTRACT: The innovation proposed is a computationally-tractable, physics-based, portable turbulent combustion modeling strategy for application to a wide range of Air Force aero-propulsive systems, including augmentors, liquid rockets and scramjets. This modeling strategy will be implemented within an Application Programming Interface (API) library suitable for easy integration within Air Force ...

    STTR Phase I 2014 Department of DefenseAir Force
  4. Decision Making under Uncertainty for Dynamic Spectrum Access

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT02

    ABSTRACT: Due to scarcity of spectrum, Dynamic Spectrum Access (DSA) becomes a needed technology to improve the utilization of electromagnetic spectrum for DoD satellite communication. However, current DSA approaches are developed for terrestrial communications without addressing the unique challenges for SATCOM environments such as error-prone spectrum sensing, high mobility, and large coverage. ...

    STTR Phase I 2014 Department of DefenseAir Force
  5. Secure Efficient Cross-domain Protocols

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF13AT08

    ABSTRACT: Coordinating and sharing information across multi-level security (MLS) networks are of great interest in many military applications. However, it is very challenging to accomplish those goals due to the heterogeneous security classifications of different network domains. The recent proposed cross-domain solutions (CDS) provide initial steps to make such applications possible. However, th ...

    STTR Phase I 2014 Department of DefenseAir Force
  6. Next Generation Tracking Architectures for Urban Surveillance Areas

    SBC: ULTRAHINET LLC            Topic: AF13AT10

    ABSTRACT: UltraHiNet, LLC (UHN) proposes to develop a prototype next generation tracking architecture which exploits wide area motion imagery (WAMI) systems and leverages projected heterogeneous high performance computing (HPC) architectures for on-board and ground-based processing of vehicle and dismount targets for urban surveillance. Our research team will focus on the following goals: 1. Dev ...

    STTR Phase I 2014 Department of DefenseAir Force
  7. Automated assessment of disclosure risk

    SBC: SECURBORATION, INC.            Topic: AF13AT14

    ABSTRACT: Information systems continue to progress in terms of collecting, characterizing and assessing information. While this evolution has provided unprecedented intelligence capability to the U.S. and our allies, it has also raised unique challenges in the area of information security and disclosure risks. In particular, the intelligence community (IC) currently lacks the ability to understan ...

    STTR Phase I 2014 Department of DefenseAir Force
  8. Highly-Resolved Wall-Shear-Stress Measurement in High Speed Flows

    SBC: INTERDISCIPLINARY CONSULTING CORP            Topic: AF14AT08

    ABSTRACT: The ability to obtain time-resolved, direct wall shear stress measurement is an important asset to aerodynamic research, flow control and to enhance the fundamental understanding of the turbulent boundary layer. Due to a lack of reliable and affordable skin friction sensors, existing indirect methods are used to measure wall shear stress but their usefulness is limited since prior kno ...

    STTR Phase I 2014 Department of DefenseAir Force
  9. Sensitivity Analysis Methods for Complex, Multidisciplinary Systems

    SBC: ZONA TECHNOLOGY INC            Topic: AF11BT06

    ABSTRACT: The overall technical objective of this Phase II effort is to develop computational tools for computing response sensitivities of parametric multi-disciplinary air vehicle systems that exhibit nonlinear dynamic behavior for use in gradient-based optimization, smart sampling, uncertainty quantification, and risk assessment. To this end, the ZONA/MIT team will extend the 2-D ZEUS time-dom ...

    STTR Phase II 2014 Department of DefenseAir Force
  10. Sensitivity Analysis Methods for Complex, Multidisciplinary Systems

    SBC: SCIENTIFIC SIMULATIONS, LLC            Topic: AF11BT06

    ABSTRACT: The objective of this proposal is to develop efficient sensitivity analysis methods based on adjoint techniques for multi-disciplinary time-dependent problems. The approach is based on the discrete adjoint, which is derived and implemented on a software component basis, with the various multidisciplinary software components being linked together through a Python interface, thus preservi ...

    STTR Phase II 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government