You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Autonomous Broad Spectrum Environmental Sentinels

    SBC: NEVADA NANOTECH SYSTEMS, INC.            Topic: A13AT017

    We propose a platform for aerial environmental monitoring based on the integration of two advanced technologies for the first time: a lightweight, flying robotic platform capable of hovering and swarming, and a compact, low-power chemical sensor platform called the Molecular Property Spectrometer (MPS): a robust, low-cost, silicon-chip-based micro-electro-mechanical system (MEMS) that has been use ...

    STTR Phase I 2014 Department of DefenseArmy
  2. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This project address the fabrication of solar blind detectors from the MgZnO material system. Both MBE and MOCVD material growth techniques will be used for deposition of the required material layers. Simulation software we be used to aid in the design of the photodetector structure. Devices will be fabricated from the grown structures and their electrical and optical characteristics determined.

    STTR Phase II 2014 Department of DefenseArmy
  3. Electromagnetic Simulation Software for Strongly Coupled Plasmas

    SBC: VOSS SCIENTIFIC LLC            Topic: AF11BT23

    ABSTRACT: Strong coupling in ionized plasmas occurs when inter-particle interactions result in correlation energies that are comparable to the mean kinetic energy of the thermal motion of individual particles. Strongly coupled plasmas are known to be present in a number of physical systems including ultra-cold plasmas created in the laboratory and present in the ionosphere, explosive gases associ ...

    STTR Phase II 2014 Department of DefenseAir Force
  4. Efficient and Faster Methods for Performing General Wave-Optics Propagation

    SBC: TAU TECHNOLOGIES LLC            Topic: AF18BT004

    We will develop hybrid wave propagation approach that implements FFT and EMA (Efficient Matrix Algorithms) propagators in a fashion that is transparent to the user but insures the highest efficiency and accuracy for a given propagation problem. We will develop rules to decide which propagation approach is ideal for a given situation. The propagation algorithms will be coded in Vulkan/CUDA and C++ ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Semi-Analytic Fresnel Propagation Simulation

    SBC: MZA ASSOCIATES CORP            Topic: AF18BT004

    Wave-optics simulations are critical tools for analysis of laser directed energy systems. The primary method for conducting these simulations is to evaluate the Fresnel diffraction integral using the angular spectrum method based on the fast Fourier transform (FFT). While FFTs are considered computationally efficient, their use in the Fresnel integral results in difficult grid constraints includin ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Small UAS compatible Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensors

    SBC: NEVADA NANOTECH SYSTEMS, INC.            Topic: AF18BT009

    Proposed herein are novel design methodologies to create sensors for chemical, biological, radiological, nuclear and/or explosive (CBRNE) detection aboard a Small Unmanned Aerial System (SUAS), as well as intelligent Bayesian-based plume analysis and source detection algorithms that offer capabilities for the Air Force above and beyond the state of the art. The assembled technical team of experts ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. 3D imaging for tracking and aim-point maintenance in the presence of target-pose changes

    SBC: TAU TECHNOLOGIES LLC            Topic: AF19AT005

    We propose a three-dimensional imaging approach based on digital holography. Our approach is based on frequency diversity using a single chirped pulse instead of a train of pulses with different frequencies. Our approach promises to mitigate most of the issues limiting the performance of current methods and offer additional enabling capabilities that will improve target identification and tracking ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. 3-D Tracking and Aimpoint Maintenance (3-D TrAM)

    SBC: MZA ASSOCIATES CORP            Topic: AF19AT005

    Target tracking and aimpoint maintenance are critical functions within a laser directed energy system. Traditionally, the optical sensor is a conventional camera viewing an actively illuminated target. In the absence of turbulence, it is still difficult to point the laser weapon to a specific hit spot when there are no features in the required direction. Further, atmospheric turbulence scintillate ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: TAU TECHNOLOGIES LLC            Topic: AF19AT006

    Tau Technologies is teaming with Dr. David Voelz and his research group at New Mexico State University (NMSU) to propose “Vibration Imaging for the characterization of extended non-cooperative targets�, which employs dual-pulses in two different variations for vibration imaging in order to characterize non-cooperative targets at extended standoffs. One method is based on double-pulse ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Synthetic Scene Generation for Wide Application including High Performance Computing Environments

    SBC: TAU TECHNOLOGIES LLC            Topic: AF19AT007

    Efficient design, build, and test of an HEL system leverages modeling and simulation (M&S) to reduce cost and increase robustness. Designers use models to explore parameter variations and to estimate performance in conditions which cannot be tested due to physical or financial constraints. This provides significant savings in cost and time. Because live testing is so expensive, it is best used as ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government