Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Quantum and Nanostructure Enhanced Epitaxial Lift-Off Solar Cells

    SBC: MicroLink Devices            Topic: AF13AT13

    ABSTRACT: MicroLink and its collaborators, Rochester Institute of Technology and Magnolia Solar, will develop a high-efficiency, single-junction, epitaxial lift-off (ELO) GaAs solar cell by incorporating nano-scale features, such as quantum dots and optically functional textures, within the solar cell structure. The principal technical objective of the project is to increase the AM0 efficiency o ...

    STTR Phase I 2014 Department of DefenseAir Force
  2. Nonequilibrium Plasma-Assisted Combustion-Efficiency Control in Vitiated Air

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT04

    ABSTRACT: CU Aerospace (CUA) and team partner the University of Illinois at Urbana-Champaign (UIUC) propose to perform research, development and demonstration of experimental quenching free measurements of heat-release in a realistic highly turbulent plasma-assisted flame. Kinetics models will be correspondingly updated and detailed 3D multiphysics simulations will be validated by the measuremen ...

    STTR Phase I 2014 Department of DefenseAir Force
  3. Microvascular Composites for Novel Thermal Management Devices

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT09

    ABSTRACT: Living systems rely on pervasive vascular networks to enable a plurality of biological function, exemplified by natural composite structures that are lightweight, high-strength, and capable of mass and energy transport. In contrast, synthetic composites possess high strength-to-weight ratios but lack the dynamic functionality of their natural counterparts. CU Aerospace, with team partne ...

    STTR Phase I 2014 Department of DefenseAir Force
  4. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION RESEARCH AND FLOW TECHNOLOGY INC            Topic: AF13AT12

    ABSTRACT: The innovation proposed is a computationally-tractable, physics-based, portable turbulent combustion modeling strategy for application to a wide range of Air Force aero-propulsive systems, including augmentors, liquid rockets and scramjets. This modeling strategy will be implemented within an Application Programming Interface (API) library suitable for easy integration within Air Force ...

    STTR Phase I 2014 Department of DefenseAir Force
  5. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC            Topic: A13AT006

    This project address the fabrication of solar blind detectors from the MgZnO material system. Both MBE and MOCVD material growth techniques will be used for deposition of the required material layers. Simulation software we be used to aid in the design of the photodetector structure. Devices will be fabricated from the grown structures and their electrical and optical characteristics determined.

    STTR Phase II 2014 Department of DefenseArmy
  6. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: RDMChem LLC            Topic: A14AT013

    Two-electron reduced-density-matrix (2-RDM) methods represent all of the electrons in any molecule or material with only two electrons by replacing the wave function by the 2-RDM as the basic variable for quantum many-electron theory. The 2-RDM methods, developed by David Mazziotti at The University of Chicago with support from the Army Research Office, have polynomial scaling with system size, al ...

    STTR Phase I 2014 Department of DefenseArmy
  7. Electrochemical Conversion of CO2 and Water to Syngas

    SBC: DIOXIDE MATERIALS, INC.            Topic: AF11BT07

    ABSTRACT: The objective of this project is to move an energy efficient process for the conversion of carbon dioxide and water into syngas, a key feedstock for the production of synthetic chemicals. BENEFIT: If we are successful we will have a new process to convert air water and sunlight into transportation fuels. That will result in a domestic source of fuels that does not compete with the foo ...

    STTR Phase II 2014 Department of DefenseAir Force
  8. Real Time 3-D Modeling and Immersive Visualization for Enhanced Soldier Situation Awareness

    SBC: Carnegie Robotics LLC            Topic: A12aT003

    We propose a rapid mapping and 3-D visualization system especially suited for inside buildings, tunnels, urban canyons, and other environments where GPS may be poor or not available. The system--which was fully demonstrated in our Phase I effort-- includes mobile Sensor Nodes that wirelessly supply compressed 3D range data and color imagery to a central Fusion Node. The Fusion Node runs 3D recon ...

    STTR Phase II 2014 Department of DefenseArmy
  9. Electromagnetic Simulation Software for Strongly Coupled Plasmas

    SBC: Voss Scientific, LLC            Topic: AF11BT23

    ABSTRACT: Strong coupling in ionized plasmas occurs when inter-particle interactions result in correlation energies that are comparable to the mean kinetic energy of the thermal motion of individual particles. Strongly coupled plasmas are known to be present in a number of physical systems including ultra-cold plasmas created in the laboratory and present in the ionosphere, explosive gases associ ...

    STTR Phase II 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government