You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Quantum and Nanostructure Enhanced Epitaxial Lift-Off Solar Cells

    SBC: MICROLINK DEVICES INC            Topic: AF13AT13

    ABSTRACT: MicroLink and its collaborators, Rochester Institute of Technology and Magnolia Solar, will develop a high-efficiency, single-junction, epitaxial lift-off (ELO) GaAs solar cell by incorporating nano-scale features, such as quantum dots and optically functional textures, within the solar cell structure. The principal technical objective of the project is to increase the AM0 efficiency o ...

    STTR Phase I 2014 Department of DefenseAir Force
  2. A novel Approach for High Rate Production of IR to IR Up-converting Nano-particles

    SBC: UES INC            Topic: AF11BT24

    ABSTRACT: Phosphor materials are currently being utilized in a wide variety of applications. The requirements for phosphors have become more and more stringent with smaller and smaller particles being required. In the Phase I program UES Inc. in collaboration with Penn State University has demonstrated the feasibility of a few approaches for high rate production of high efficiency IR to IR up-con ...

    STTR Phase II 2014 Department of DefenseAir Force
  3. Nonequilibrium Plasma-Assisted Combustion-Efficiency Control in Vitiated Air

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT04

    ABSTRACT: CU Aerospace (CUA) and team partner the University of Illinois at Urbana-Champaign (UIUC) propose to perform research, development and demonstration of experimental quenching free measurements of heat-release in a realistic highly turbulent plasma-assisted flame. Kinetics models will be correspondingly updated and detailed 3D multiphysics simulations will be validated by the measuremen ...

    STTR Phase I 2014 Department of DefenseAir Force
  4. Advanced Optical Diagnostics/Modeling Platform for Plasma Assisted Combustion in Vitiated Air

    SBC: SPECTRAL ENERGIES LLC            Topic: AF13AT04

    ABSTRACT: Modern gas-turbine engines designs for the next-generation warfighter need to reduce exhaust gas temperatures to reduce effective thermal footprint thereby improving the mission capability. In such situations, high-altitude engine operation is often limited by the overall combustion efficiency, lean flame blow out (LBO) limit, and combustion instabilities that results in narrower opera ...

    STTR Phase I 2014 Department of DefenseAir Force
  5. Intracellular Detection of Small Molecules in Live Cells

    SBC: AGAVE BIOSYSTEMS INC.            Topic: AF11BT09

    ABSTRACT: Protection of first responders who are exposed to hazards including chemical warfare agents (CWAs) is a very critical need. The need is derived from not only their welfare but their ability to respond, protect the community and provide logistical support to the response. A simple exposure monitor would provide critical information to the first responder and allow them to respond accor ...

    STTR Phase II 2014 Department of DefenseAir Force
  6. Narrowband Perfect Absorber for Infrared Sensing

    SBC: SRICO INC            Topic: A12aT023

    SRICO proposes to combine metamaterial narrowband absorbers and SRICO-proprietary thin film pyroelectric thermal detectors to produce ultra low size, weight, power and cost (SWAP-C) room temperature stand-off chemical sensors. Metamaterial narrowband absorber elements are integrated into the thin film pyroelectric detector process to provide conversion of radiation to heat, which is then sensed by ...

    STTR Phase II 2014 Department of DefenseArmy
  7. Real Time 3-D Modeling and Immersive Visualization for Enhanced Soldier Situation Awareness

    SBC: Carnegie Robotics LLC            Topic: A12aT003

    We propose a rapid mapping and 3-D visualization system especially suited for inside buildings, tunnels, urban canyons, and other environments where GPS may be poor or not available. The system--which was fully demonstrated in our Phase I effort-- includes mobile Sensor Nodes that wirelessly supply compressed 3D range data and color imagery to a central Fusion Node. The Fusion Node runs 3D recon ...

    STTR Phase II 2014 Department of DefenseArmy
  8. Exploitable Physics for Recognition and Classification II

    SBC: MATRIX RESEARCH INC            Topic: AF12BT06

    ABSTRACT: The objective of this effort is to demonstrate innovative methods for deriving a sparse set of physical target features that can be used for exploitation of air-to-ground signature data collected from sensor systems including electro-optical, infrared, ladar, and radar. Current classification methods require near exact replication of the original imaging parameters, or extensive modelin ...

    STTR Phase II 2014 Department of DefenseAir Force
  9. Microvascular Composites for Novel Thermal Management Devices

    SBC: CU AEROSPACE L.L.C.            Topic: AF13AT09

    ABSTRACT: Living systems rely on pervasive vascular networks to enable a plurality of biological function, exemplified by natural composite structures that are lightweight, high-strength, and capable of mass and energy transport. In contrast, synthetic composites possess high strength-to-weight ratios but lack the dynamic functionality of their natural counterparts. CU Aerospace, with team partne ...

    STTR Phase I 2014 Department of DefenseAir Force
  10. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION RESEARCH & FLOW TECHNOLOGY INC            Topic: AF13AT12

    ABSTRACT: The innovation proposed is a computationally-tractable, physics-based, portable turbulent combustion modeling strategy for application to a wide range of Air Force aero-propulsive systems, including augmentors, liquid rockets and scramjets. This modeling strategy will be implemented within an Application Programming Interface (API) library suitable for easy integration within Air Force ...

    STTR Phase I 2014 Department of DefenseAir Force
US Flag An Official Website of the United States Government