You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel MgZnO-based spintronic materials and devices.

    SBC: SVT ASSOCIATES INC            Topic: AF03T020

    This Phase I STTR project addresses the development of novel Zinc Oxide-based spintronic devices. The spintronic devices will find widespread application in civilian and military markets offering new generation of transistors, lasers and integrated magnetic sensors. The objective of the Phase I effort is to explore novel doping schemes to achieve room temperature ferromagnetism in ZnMgO materials ...

    STTR Phase I 2004 Department of DefenseAir Force
  2. Low-Noise Avalanche Photodiodes for Mid-IR Applications

    SBC: SVT ASSOCIATES INC            Topic: AF04T021

    Avalanche photodiodes (APDs) are the detector of choice for low noise, high speed, high sensitivity photodetectors. Applications in the mid-IR (3-5 micron) include optical trace gas detection, LADAR, quantum cryptography and targeting countermeasures. Currently there are no commercially available APDs operating in this wavelength range. To address this need, this Phase I program will investigat ...

    STTR Phase I 2004 Department of DefenseAir Force
  3. Development of III-V Terahertz Quantum Cascade Lasers

    SBC: SVT ASSOCIATES INC            Topic: AF03T024

    The purpose of this Phase I study is to develop quantum cascade laser (QCL) with terahertz (THz) emission. Terahertz photons have energies which lie in the regime between optical photons and high frequency radio waves and have many important commercial and military applications. In the QCL, quantum wells (QWs) and injection layers are grown in a III-V semiconductor superlattice. The QWs and barr ...

    STTR Phase I 2004 Department of DefenseAir Force
US Flag An Official Website of the United States Government