You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Accelerated Burn-In Process for High Power Quantum Cascade Lasers to Reduce Total Cost of Ownership

    SBC: ADTECH PHOTONICS, INC            Topic: N20BT029

    Quantum Cascade Lasers (QCLs) are one of the most versatile sources of radiation in the mid-infrared range and have found applications in a variety of fields. Despite their widespread adoption, one of the main hurdles holding QCLs back from large volume manufacturing is the large cost of ownership. While QCLs, like most semiconductor devices based on III-V compounds, can leverage the economies of ...

    STTR Phase I 2021 Department of DefenseNavy
  2. Bounding generalization risk for Deep Neural Networks

    SBC: Euler Scientific            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
  3. Analysis and Modeling of Erosion in Gas-Turbine Grade Ceramic Matrix Composites (CMCs)

    SBC: Alpha Star Corporation            Topic: N19BT033

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under erosion and post erosion. Our team will develop and demonstrate a physics-based model for erosion/post erosion of CMC’s at room and elevated temperatures (RT/ET). The ICME (Integrated Computational Material Engineering) Physics based Multi Sc ...

    STTR Phase I 2020 Department of DefenseNavy
  4. Three Dimensional Field of Light Display

    SBC: Triton Systems, Inc.            Topic: N19BT036

    As the Navy continues to reduce manpower requirements associated with operating ever-increasing technologically complex systems, new methods that enable natural and intuitive interaction with 3D data are required to reduce overall operator workload and to enhance situational awareness. Operators who cannot quickly access and interpret data are prone to errors ranging from missing critical data dur ...

    STTR Phase I 2020 Department of DefenseNavy
  5. Fully Automated Quantum Cascade Laser Design Aided by Machine Learning

    SBC: Pendar Technologies, LLC            Topic: N20AT003

    Pendar Technologies proposes to develop a QCL simulation tools that leverage machine learning to dramatically improve the speed of QCL device design. The innovative QCL design suite proposed will benefit from recent advances made by Pendar in bandstructure engineering, laser cavity design and thermal management at the chip and the package level.

    STTR Phase I 2020 Department of DefenseNavy
  6. Hexahedral Dominant Auto-Mesh Generator

    SBC: Hypercomp, Inc.            Topic: N20AT004

    The objective of our proposed STTR phase-I work is to transition the latest advancements within the academic community to the design of a robust, user-friendly, and application-oriented tool for automatic hex-dominant meshing. Our software will fully couple CAD models to the discretized domain required by finite element software in structural analysis and other simulation and modeling applications ...

    STTR Phase I 2020 Department of DefenseNavy
  7. Hexahedral Dominant Auto-Mesh Generator

    SBC: M4 ENGINEERING, INC.            Topic: N20AT004

    Advances in both software and computer hardware have made the finite element method the preeminent choice for analyzing highly complex systems that are of great value to the Department of Defense.   The US Defense industry, however, continues to spend enormous time and resources in mesh generation, a key step in finite element analysis, despite progress that has been made in automated mesh gener ...

    STTR Phase I 2020 Department of DefenseNavy
  8. Ambient Quantum Processor compatible with an All-photonic Repeater Architecture

    SBC: CATALYTE, LLC            Topic: N20AT005

    The significance of the problem is to deploy combined quantum communication-and-processing near to Navy applications.   Our approach, when successful, would enable small, ambient operating QPUs to be connected at a distance by quantum-secure communication.  Unlike bulky optical components and in-contrast to cryogenic qubits, our system, using in situ generated photons, offers a practical s ...

    STTR Phase I 2020 Department of DefenseNavy
  9. High Efficiency Ceramic Propeller for Small UAS

    SBC: HYDRONALIX, INC.            Topic: N20AT006

    The purpose of this program is to develop “CerFoil”, a radically new lightweight ceramic composite propeller for use in small unmanned air systems (SUAS). The team consists of Hydronalix, Inc. and the Oklahoma State University Next Generation Materials Laboratory who will design, fabricate, and test a new Scimitar type propeller design to radically increase aerodynamic efficiency through imple ...

    STTR Phase I 2020 Department of DefenseNavy
  10. High Efficiency Propeller for Small Unmanned X Systems using Advanced Composite Materials

    SBC: CATTO PROPELLERS            Topic: N20AT006

    In the proposed STTR study, Catto Propellers, Inc. (Catto) and the University of North Dakota (UND) will create an efficient new propeller design utilizing advanced composite materials for use on small unmanned x systems.  During Phase I, a comprehensive study will be conducted to develop a new propeller design in order to increase propeller efficiency, reduce aerodynamic noise and utilize innova ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government