You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. High Density Capacitors for Compact Transmit and Receive Modules

    SBC: BIOENNO TECH, LLC            Topic: N17AT011

    Development of a new generation of high-energy-density capacitors for power conversion/conditioning systems will be beneficial to reduce the size, weight, and cost of resultant transmit and receive (T/R) modules in modern radar and electronic warfare transmitters. Among capacitor technologies available, multilayer ceramic capacitors (MLCCs) and polymer-ceramic composite dielectric based capacitors ...

    STTR Phase I 2017 Department of DefenseNavy
  2. Software Tools for Implementing Speech Agents in Crew Resource Management Training Systems

    SBC: OPTIMAL SYNTHESIS INC.            Topic: N17AT010

    Crew resource management training systems are often constrained by the high cost and lack of flexibility in coordinating a large groups of human role players for part-task training. Motivated by the recent maturation of the speech synthesis and recognition technologies, speech-enabled crew role-player agents are being introduced to address these limitations. However, difficulties remain in customi ...

    STTR Phase I 2017 Department of DefenseNavy
  3. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: OPTO-KNOWLEDGE SYSTEMS, INC.            Topic: N17AT016

    OKSI and Northwestern University propose to develop a super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that produces extreme enhancement of low resolution images. Image enhancement of at least 4x is expected using a standard imaging system. OKSI and Northwestern University will also develop a detector-limited imaging system specifically designed to be used with the SR methodo ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Multi-Sensor Autonomous Hydrothemal Vent Detection System

    SBC: 10dBx LLC            Topic: N17AT028

    Development of a concept of operations is proposed for autonomous hydrothermal vent detection in a single sortie. The concept involves active sonars (forward looking and swath mapping sonars, plus possibly a 1-2 MHz acoustic Doppler current profiler (ADCP) for measuring midwater turbulence) mounted on a commercial AUV equipped with environmental sensors (e.g., CTD, fluorometer, MAPR-ORP). The AUV ...

    STTR Phase I 2017 Department of DefenseNavy
  5. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS, INC.            Topic: N17BT035

    OKSI and Professor Matthew Taylor will develop the Cognitive Adaptation and Mission Optimization (CAMO) command and control tool for teams of UAS platforms. CAMO will incorporate existing databases (e.g., NASA population maps, FAA airspace maps, etc.) as well as real-time data from UAS into a learning-based cognitive control solution that maximizes mission performance while minimizing risk for a t ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Electro-Optic Transmissive Scanner

    SBC: ULTIMARA INC.            Topic: N17AT001

    The goal of this program is to develop and construct a thin, light weight, low power, large aperture, electro-optic (EO) transmissive scanner that utilizes electro-optically active nanomaterial structures, suitable for UAVs platform. The nano-material beam-steering technology aperture system offers an ultra-thin Size, Weight, and Power (SWAP) to fit on UAV;s airframe and achieve ultrafast and wide ...

    STTR Phase I 2017 Department of DefenseNavy
  7. Adaptive Optics controlled nonlinear propagation of USLP

    SBC: Advanced Systems & Technologies Inc            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase I 2017 Department of DefenseNavy
  8. Visual Tools and Progressive Automation for Complex Knowledge Management and Decision Support

    SBC: STOTTLER HENKE ASSOCIATES INC            Topic: N17AT004

    We propose to adapt and automate the processes and technologies associated with evidence based decision support to the Navyproviding a tool that can synthesize current cognitive and learning science knowledge and inform decisions so as to maximize the value gained for each training expenditure. We will develop a plug-play architecture that will allow us to make the best use of emerging technologie ...

    STTR Phase I 2017 Department of DefenseNavy
  9. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase I 2017 Department of DefenseNavy
  10. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: Intelligent Optical Systems, Inc.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government