You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Botnet Analytics Appliance (BNA)

    SBC: MILCORD LLC            Topic: HSB061008

    Recent reports indicate the activity of more than 6,000 botnet C and C servers. 70 million zombies are responsible for 80 percent of SPAM. Given the exponential growth of the botnet threat, the security of our nation s cyber infrastructure demand automated botnet activity monitoring solutions. In Phase I, Milcord developed a feasibility prototype of a Bayesian Activity Monitor for Botnet Defense. ...

    STTR Phase II 2007 Department of Homeland Security
  2. Development of Advanced Military Prosthetic Shoulder System

    SBC: Sarcos Group LC            Topic: A05161

    A new dual pump hydraulic supply designed to enable energetically autonomous exoskeleton robots will be developed, tested and demonstrated. This new hydraulic supply will be integrated with a high performance hydraulically actuated full body exoskeleton robot and used to test and demonstrate the overall performances of such systems. New control policies that include: (i) an assist mode, where the ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  3. Human Performance Optimization: Ketone Esters for Optimization of Operator Performance in Hypoxia

    SBC: HVMN Inc.            Topic: SOCOM17C001

    In the setting of altitude-induced hypoxia, operator cognitive capacity degrades and can compromise both individual and team performance. This degradation is linked to falling brain energy (ATP) levels and an increased reliance on anaerobic energy production from glucose. Ketone bodies are the evolutionary alternative substrate to glucose for brain metabolic requirements; previous studies have sho ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  4. Human Performance Optimization

    SBC: REJUVENATE BIO INC            Topic: SOCOM17C001

    Special Operations Forces (SOF) are an integral aspect of the US military. SOF operators are among the most elite and highly qualified individuals in the U.S. military. As such, extraordinary physical and mental demands are placed upon them to excel in extreme environments for extended periods of time. This unrelenting cycle of combat deployments and intense pre-deployment training shortens the fu ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  5. System for Nighttime and Low-Light Face Recognition

    SBC: Systems & Technology Research LLC            Topic: SOCOM18A001

    Face recognition performance using deep learning has seen dramatic improvements in recent years. This improvement has been fueled in part by the curation of large labeled training datasets with millions of images of hundreds of thousands of subjects.This results in effective generalization for matching over pose, illumination, expression and age variation, however these datasets have traditionally ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  6. System for Nighttime and Low-Light Face Recognition

    SBC: MUKH Technologies LLC            Topic: SOCOM18A001

    Recognizing faces in low-light and nighttime conditions is a challenging problem due to the noisy and poor quality nature of the images.Thermal imaging is often used to obtain facial biometric in such conditions. Thermal face images, while having a strong signature at nighttime, are not typically maintained in biometric-enabled watch lists and so must be compared with visible-light face images to ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  7. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. Bounding generalization risk for Deep Neural Networks

    SBC: Euler Scientific            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
US Flag An Official Website of the United States Government