You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. STTR Phase I:Self-healing Power Electronics for Urban Air Mobility Applications

    SBC: VALCON LABS, INC.            Topic: MO

    The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is to increase safety and reduce weight and redundancies for many vehicular systems and electronic devices. This project will also enhance autonomous systems integration in terms of diagnostics and enable reconfiguration for a variety of safety-critical applications. The proposed self-healing, fault-tol ...

    STTR Phase I 2023 National Science Foundation
  2. STTR Phase I:Registration of Below-Canopy, Above-Canopy, and Satellite Sensor Streams for Forest Inventories

    SBC: GAIA AI, INC            Topic: ET

    The broader/commercial impact of this Small Business Technology Transfer (STTR) Phase I project is to increase the volume and improve the accuracy of data on the world’s forests. Presently, when collecting data on forests, surveyors must choose between slow, laborious methods, or quick but inaccurate ones. This project uses recent advances in sensors and machine learning to greatly improve data ...

    STTR Phase I 2023 National Science Foundation
  3. STTR Phase I:Enabling Student Project Collaboration with Artificial Intelligence Augmented Mentorship

    SBC: Tracie Ponder            Topic: AI

    The broader/commercial impact of this Small Business Technology Transfer Phase I project is in improving both student learning and workforce readiness through interdependent learning experiences. The project will create project-based environments that promote skills such as communication, critical thinking, problem solving, time management, creativity, and teamwork – all mirroring professional w ...

    STTR Phase I 2023 National Science Foundation
  4. STTR Phase I:Constellation of Nanosatellite Radars for Near-Hourly, Global Ocean Surface Vector Winds

    SBC: Michael Walton            Topic: SP

    The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is a significant improvement in the accuracy of weather forecasts by increasing the refresh rate of sea wind measurements ten-fold. This forecast improvement will increase the economic competitiveness of the United States by improving efficiency in maritime, agriculture, and logistics industri ...

    STTR Phase I 2023 National Science Foundation
  5. High Performance Nuclear Materials Additive Manufacturing with Integrated Thermal Processing

    SBC: MCCRINK JOSEPH            Topic: C5640f

    Advanced or additive manufacturing (AM) can enable materials with enhanced performance and facilitate rapid development cycles relative to conventional processes. Hence, AM process improvements can benefit nuclear energy materials which are subject to high thermal flux, intense irradiation fields, high stresses, and be exposed to reactive fluids and gases. This project will develop and demonstrate ...

    STTR Phase I 2023 Department of Energy
  6. Solar-thermal production of synthetic flake graphite from natural gas

    SBC: SolGrapH Inc.            Topic: C5613a

    This project aims to advance and commercially translate technology that uses concentrated solar radiation to convert natural gas directly into high-quality graphite and hydrogen. The solar-driven pyrolysis process involves no catalyst and releases zero CO2 as it captures carbon in the form of high-value graphite in a scalable, roll-to-roll (R2R) process. The pyrolysis process also produces a high- ...

    STTR Phase I 2023 Department of Energy
  7. C56-10b Advanced Microencapsulated Carbon Sorbents (MECS) for Distributed Carbon Capture In Buildings

    SBC: ADC TECHNOLOGY, INC.            Topic: C5610b

    C56-10b-272692It is a broad goal of our country to reduce greenhouse gas emissions by fifty percent by 2030 and achieve net zero by 2050. The built environment plays a critical role in addressing this goal as our building sector accounts for thirty-six percent of national carbon dioxide emissions. Buildings also act as a reservoir of carbon dioxide where it concentrates and results in increased en ...

    STTR Phase I 2023 Department of Energy
  8. Fuel Cell Integrated Power Electronics Module (FCIPEM)

    SBC: ROCKETRUCK INC            Topic: C5618i

    Statement of the problem – The Fuel Cell Integrated Power Electronics Module (FCIPEM) project addresses urgent needs to promote standardization and manufacturing of power electronics for heavy-duty fuel cell applications. A key barrier to developing cost-effective fuel cell-based power systems is the complexity and cost of integrating DC-to-DC converters and DC-to-AC power inverters. Commercial ...

    STTR Phase I 2023 Department of Energy
  9. Advanced Multiport Solar Converter (AMSC)

    SBC: ROCKETRUCK INC            Topic: C5615a

    Statement of the problem – The proposed Advanced Multiport Solar Converter (AMSC) project directly addresses the problem the Department of Energy (DOE) presents in its Topic C56-15(a) – to incorporate wide-bandgap-based devices into a power conversion topology “designed to integrate and optimize distributed energy resources – in particular solar generation – with energy storage capabilit ...

    STTR Phase I 2023 Department of Energy
  10. Scalable High-density Superconducting Flex Cables and Circuits

    SBC: NIELSON SCIENTIFIC LLC            Topic: C5637c

    There is a growing need for a commercially available high-density superconducting flex cable for a variety of ultra-sensitive, high pixel count instruments/focal plane arrays for the study of space as well as quantum computing and quantum information processing. However, traditional flex circuit manufacturing techniques and tools cannot achieve the high channel density necessary for these customer ...

    STTR Phase I 2023 Department of Energy
US Flag An Official Website of the United States Government