You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Two-color Infrared Laser Arrays for Scene Projection

    SBC: ATTOLLO ENGINEERING, LLC            Topic: A17AT018

    Current scene projection hardware is challenged to simultaneously meet the requirements for high peak temperature (> 2000K), high resolution (> 1Kx1K), response time < 1 ms, cryogenic and temporally uniform photon flux. MEMS, Resistor arrays, liquid crystals, and photonic crystals all suffer in one or more areas. MEMS suffer from flicker and low dynamic range. Resistor arrays suffer from low frame ...

    STTR Phase II 2019 Department of DefenseAir Force
  2. Broadband Optical Constants Measurement Device

    SBC: NANOHMICS INC            Topic: AF17AT010

    Optical characterization of materials has remained an active area of research for many decades. With advancements in light sources, detectors, microscopy, or compact spectroscopic analysis, a renewed effort is made to apply these technologies to biological tissue characterization. There is a current need to characterize the details of the interaction of electromagnetic radiation with different mat ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF17AT018

    The focus of this STTR program is the development and maturation of a novel, room-temperature process to fabricate multi-layer metal-polymer (including PVDF and other smart materials) composites in an additive approach. This overcomes the limitation arising from the large temperature difference between metal and polymer manufacturing processes, and presents a new technology for additive manufactur ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Alternative Methods for Creating a Sodium Guidestar

    SBC: Crystalline Mirror Solutions, LLC            Topic: AF17AT005

    The development of compact and telescope-deployable laser sources emitting in the yellow portion of the visible spectrum is critical for the advancement of DoD-relevant adaptive optics capabilities. The objective of this project is to continue the development of novel laser architectures based on optically-pumped substrate-transferred epitaxial gain media capable of efficient thermal management an ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Unified sensor for atmospheric turbulence and refractivity characterization

    SBC: G. A. Tyler Associates, Inc.            Topic: AF17AT008

    In this effort, tOSC and the University of New Mexico COSMIAC (Configurable Space Microsystems Innovation Applications Center) will combine to generate a Target-in-the-Loop (TIL) system concept that can simultaneously measure the strength of atmospheric turbulence and scintillation, as well as the refractivity occurring at the measurement time. For this system concept, we will leverage existing tO ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Alternative Methods for Creating a Sodium Guidestar

    SBC: Arete Associates            Topic: AF17AT005

    Adaptive Optics allow ground-based astronomical observatories to overcome atmospheric distortion limited observation by using natural and artificial guide stars to measure the distortion. Sodium-layer guide stars provide near all-sky coverage for high resolution astronomy. Over the last 20 years, Optically Pumped Semiconductor Laser (OPSL), also referred to as Vertically Extended Cavity Surface Em ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Holistic Interoperable Directional Data Enhancement Network

    SBC: FUSE INTEGRATION, INC.            Topic: AF17BT003

    Currently fielded multi-beam CDL systems have been developed in an ad-hoc manner consisting of a collection of poorly integrated off the shelf technologies where controllers, radios, routers, firewalls, encryptors, and antennas are bolted together to reduce time to field. Proprietary API’s, electrical interfaces, and hardware interfaces impede the success of the approach and result in a sub ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. Closed-Loop Feedback Control for Transcranial Direct Current Stimulation, Phase II.

    SBC: QUANTUM APPLIED SCIENCE & RESEARCH INC            Topic: AF17BT002

    Human analysts are presented with ever-increasing amounts of data to process, taxing the limitations of human cognitive capacity. This cognitive overloading leads to increased likelihood of errors and accidents, with costly consequences in mission critical operations. Consequently, there is a rising demand for more efficient processing of increasingly large amounts of intelligence. Transcranial di ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Quantum Dot LED Array for IR Scene Projection

    SBC: NANOHMICS INC            Topic: AF18AT017

    Recent breakthroughs in the material quality and fabrication methods of III-V InAs/GaSb superlattice (SL) structures with a Type II band alignment has enabled high-performance MWIR detectors and LEDs. Nanohmic Inc. in collaboration with UT Austin proposes to develop Type II InGaSb/InAs quantum dot infrared light emitting diodes (QD-IRLED) for high-power infrared scene projection. This particular a ...

    STTR Phase II 2019 Department of DefenseAir Force
  10. Anti-Reflective Surface structures for Infrared Non-linear Materials

    SBC: NANOHMICS INC            Topic: AF18AT016

    High-power, high-efficiency, broadly-tunable coherent sources in the mid-wave infrared (MWIR, λ=3–5 μm) spectral band are coveted for applications relating to infrared (IR) countermeasures, remote chemical sensing, and free-space optical communication. MWIR sources based on optical nonlinear frequency conversion can generate broadly-tunable kilowatt-level coherent radiation over the e ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government